Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2017 | 78 |

Tytuł artykułu

Ecophysiological aspects of the interaction between Cameraria ohridella and Guignardia aesculi on Aesculus hippocastanum


Treść / Zawartość

Warianty tytułu

Języki publikacji



Popular in the urban environment is the horse chestnut, Aesculus hippocastanum which is suffering mainly due to the feeding of the horse chestnut leaf miner (Cameraria ohridella). The harmfulness of this pest is well recognized. Not much attention was put in discovering the interaction of this insect with the fungal pathogen Guignardia aesuli, the agent of leaf blotch. Host plant mediation in this particular insect-plant pathogen interaction is crucial for understanding the complexity of the horse chestnut’s current and future situation. Recognising the response of the host plant for separated and simultaneous colonisation by insect and fungus was the aim of this study. Leaf damage dynamics and phenolic compounds content (total soluble phenolic compounds – TPh, and condensed tannins – CT), and stem volume increment (SVI) of the horse chestnut saplings was considered and their relationship identified. The main hypothesis was that insect feeding and fungal infection when separated elicit a similar pattern in defence response of the host but this defence response is different when they both coexist on the same plant. Basing on crown projection area photographs sequence, foliage damage dynamics was assessed (Richard’s growth model) and protocol developed. Measurements of stem volume were performed sequentially to indicate potential growth response. Through this study, it was identified that the content of phenolic compounds in leaves was higher when both pests colonized saplings in comparison with those where saplings were infested by one biotic factor. It is also documented that foliage damage dynamics was higher when only the fungal pathogen attacked plants than when it was infected by both pests. A trade-off was identified between growth and secondary metabolism. Leaf damage affected stem volume increment only in the late summer, when a high level of defoliation was observed. Simultaneous infestation by fungal and insect agents made unfavourable conditions rather for the former. How this interaction affects the latter is not covered by our results and still remains undiscovered.

Słowa kluczowe







Opis fizyczny




  • Augustin S, Guichard S, Heitland W, Freise J, Svatoš A & Gilbert M (2009) Monitoring and dispersal of the invading Gracillariidae Cameraria ohridella. Journal of Applied Entomology 133: 58–66. doi:10.1111/j.1439-0418.2008.01333.x.
  • Ayres MP, Clausen TP, MacLean Jr. SF, Redman AM & Reichardt PB (1997) Diversity of Structure and Antiherbivore Activity in Condensed Tannins. Ecology 78: 1696–1712. doi:10.2307/2266094.
  • Bednarz B & Scheffler M (2008) Wpływ żeru szrotówka kasztanowcowiaczka (Cameraria ohridella Deschka & Dimic) na szerokość słojów rocznych kasztanowca białego (Aesculus hippocastanum L.). Sylwan 152: 53–66.
  • Bhatti I, Ozanne C & Shaw P (2013) Parasitoids and parasitism rates of the horse chestnut leaf miner Cameraria ohridella Deschka and Dimić [Lepidoptera: Gracillariidae] across four sites in south-west London. Arboricultural Journal 35: 147–159. doi:10.1080/03071375.2013.813706.
  • Cole WG & Lorimer CG (1994) Predicting tree growth from crown variables in managed northern hardwood stands. Forest Ecology and Management 67: 159–175. doi:10.1016/0378-1127(94)90014-0.
  • Demkura PV, Abdala G, Baldwin IT & Ballare CL (2010) Jasmonate-dependent and –independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiology 152: 1084–1095. doi:10.1104/pp.109.148999.
  • Deschka G & Dimić N (1986) Cameraria ohridella sp. n. (Lep., Lithocolletidae) aus Mazedonien, Jugoslawien. Acta entomologica Jugoslavica 22: 11–23.
  • Ericsson A, Larsson S & Tenow O (1980) Effects of early and late season defoliation on growth and carbohydrate dynamics in scots pine. Journal of Applied Ecology 17: 747–769. doi:10.2307/2402653.
  • Franiel I, Woźnica P & Orlik H (2014) Zaburzenia procesu kwitnienia i owocowania Aesculus hippocastanum L. jako efekt żerowania Cameraria ohridella Deschka & Dimić. Sylwan 158: 41–48.
  • Gardes M & Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. doi:10.1111/j.1365-294X.1993.tb00005.x.
  • Gilbert M, Svatoš A, Lehmann M & Bacher S (2003) Spatial patterns and infestation processes in the horse chestnut leafminer Cameraria ohridella: A tale of two cities. Entomologia Experimentalis et Applicata 107: 25–37. doi:10.1046/j.1570-7458.2003.00038.x.
  • Gregorczyk A (1998) Richards plant growth model. Journal of Agronomy and Crop Science 181: 243–247. doi:10.1111/j.1439-037X.1998.tb00424.x.
  • Hudson HJ (1987) Guignardia leaf blotch of horsechestnut. Transactions of the British Mycological Society 89: 400–401.
  • Huot B, Yao J, Montgomery BL & He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant 7: 1267–1287. doi:10.1093/mp/ssu049.
  • Inbar M, Doostdar H, Leibee GL & Mayer RT (1999) The role of plant rapidly induced responses in asymmetric interspecific interactions among insect herbivores. Journal of Chemical Ecology 25: 1961–1979. doi:10.1023/A:1020998219928.
  • Johnson G & Schaal LA (1957) Accumulation of phenolic substances and ascorbic acid in potato tuber tissue upon injury and their possible role in disease resistance. American Potato Journal 34: 200–209. doi:10.1007/BF02854948.
  • Johnson MTJ, Bertrand JA & Turcotte MM (2016) Precision and accuracy in quantifying herbivory. Ecological Entomology 41: 112–121. doi:10.1111/een.12280.
  • Karolewski P & Jagodziński AM (2013) Share of carbon in defense compounds against biotic factors in woody plants. Sylwan 157: 831–841.
  • Kawazu K, Mochizuki A, Sato Y, Sugeno W, Murata M, Seo S & Mitsuhara I (2012) Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interactions 6: 221–230. doi:10.1007/s11829-011-9174-z.
  • Kessler A & Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53: 299–328. doi:10.1146/annurev.arplant.53.100301.135207.
  • Lazebnik J, Frago E, Dicke M & van Loon JJA (2014) Phytohormone mediation of interactions between herbivores and plant pathogens. Journal of Chemical Ecology 40: 730–741. doi:10.1007/s10886-014-0480-7.
  • Mithöfer A & Boland W (2012) Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology 63: 431–450. doi:10.1146/annurev-arplant-042110-103854.
  • Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E & Desneux N (2013) Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173: 1379–1386. doi:10.1007/s00442-013-2716-6.
  • Neilson EH, Goodger JQD, Woodrow IE & Møller BL (2013) Plant chemical defense: at what cost? Trends in Plant Science 18: 250–258. doi:10.1016/j.tplants.2013.01.001.
  • Nykänen H & Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104: 247–268. doi:10.1111/j.0030-1299.2004.12768.x.
  • Oszmiański J, Kalisz S & Wojdyło A (2014) The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 19: 14625–14636. doi:10.3390/molecules190914625.
  • Pastirčáková K, Pastirčák M, Celar F & Shin H-D (2009) Guignardia aesculi on species of Aesculus: new records from Europe and Asia. Mycotaxon 108: 287–296.
  • Percival GC, Barrow I, Noviss K, Keary I & Pennington P (2011) The impact of horse chestnut leaf miner (Cameraria ohridella Deschka and Dimic; HCLM) on vitality, growth and reproduction of Aesculus hippocastanum L. Urban Forestry & Urban Greening 10: 11–17. doi:10.1016/j.ufug.2010.11.003.
  • Pichersky E & Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5: 439–445. doi:10.1016/S1360-1385(00)01741-6.
  • Price ML, Van Scoyoc S & Butler LG (1978) A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry 26: 1214–1218. doi:10.1021/jf60219a031.
  • Reichenbacker RR, Schultz RC & Hart ER (1996) Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration. Environmental Entomology 25: 632–642. doi:10.1093/ee/25.3.632.
  • Richards FJ (1959) A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–300. doi:10.1093/jxb/10.2.290.
  • Salemaa M, Jukola-Sulonen EL (1990) Vitality rating of picea abies by defoliation class and other vigour indicators. Scandinavian Journal of Forest Research 5: 413–426. doi:10.1080/02827589009382624.
  • Salminen J-P & Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology 25: 325–338. doi:10.1111/j.1365-2435.2010.01826.x.
  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30: 3875–3883. doi:10.1016/0031-9422(91)83426-L.
  • Singleton VL & Rossi Jr. JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144–158.
  • Stout MJ, Thaler JS & Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annual Review of Entomology 51: 663–689. doi:10.1146/annurev.ento.51.110104.151117.
  • Strauss SY, Rudgers JA, Lau JA & Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends in Ecology & Evolution 17: 278–285. doi:10.1016/S0169-5347(02)02483-7.
  • Stygar D, Dolezych B, Nakonieczny M, Migula P, Michalczyk K & Zaak M (2010) Digestive enzymes activity in larvae of Cameraria ohridella (Lepidoptera: Gracillariidae). Comptes Rendus Biologies 333: 725–735. doi:10.1016/j.crvi.2010.08.004.
  • Terra WR, Ferreira C & Baker JE (1996) Compartmentalization of digestion: Biology of the insect midgut (ed. by MJ Lehane & PF Billingsley) Chapman & Hall, London, pp. 206–235.
  • Thaler JS, Fidantsef AL & Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. Journal of Chemical Ecology 28: 1131–1159. doi:10.1023/A:1016225515936.
  • Thalmann C, Freise J, Heitland W & Bacher S (2003) Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees 17: 383–388. doi:10.1007/s00468-003-0249-z.
  • Thomma BP, Penninckx IA, Broekaert WF & Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13: 63–68. doi:10.1016/S0952-7915(00)00183-7.
  • Tomiczek C & Krehan H (1998) The horsechesnut leafmining moth (Cameraria Ohridella): A new pest in Central Europe. Journal of Arboriculture 24: 144–148.
  • Weryszko-Chmielewska E & Haratym W (2011) Changes in leaf tissues of common horse chestnut (Aesculus hippocastanum L.) colonised by the horse-chestnut leaf miner (Cameraria ochridella Deschka&Dimić). Acta Agrobotanica 64: 11–22.
  • White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics: PCR Protocols: A Guide to methods and applications (ed. by MA Innis, DH Gelfand, JJ Sninsky & TJ White) Academic Press, New York, pp. 315–322.
  • Wiley E, Huepenbecker S, Casper BB & Helliker BR (2013) The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiology 33: 1216–1228. doi:10.1093/treephys/tpt093.
  • Wyckoff PH & Clark JS (2005) Tree growth prediction using size and exposed crown area. Canadian Journal of Forest Research 35: 13–20. doi:10.1139/x04-142.
  • De Zutter N, Audenaert K, Ameye M, De Boevre M, De Saeger S, Haesaert G & Smagghe G (2017) The plant response induced in wheat ears by a combined attack of Sitobion avenae aphids and Fusarium graminearum boosts fungal infection and deoxynivalenol production. Molecular Plant Pathology 18: 98–109. doi:10.1111/mpp.12386.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.