PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 76 |

Tytuł artykułu

Mitigation of salinity stress effects on growth, physio-chemical parameters and yield of snapbean (Phaseolus vulgaris L.) by exogenous application of glycine betaine

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pots experiment was carried out during season 2017 at greenhouse of the Agric. Bot. Dep., Fac. of Agric., Zagazig Univ., Egypt to evaluate the effect of glycine betaine (GB) application under salinity stress (50 and100 mM Nacl) on growth, physio-chemical analysis and yield of snap bean cv. Bronco. A complete randomized blocks design was used in this search with three replications. Growth parameters, chlorophyll content and green pod yield were significantly decreased with subjecting plants to NaCl. However foliar application of GB detoxified the stress generated by NaCl and significantly improved the above mention parameters. Salinity stress increased the electrolyte leakage (EL) and decreased membrane stability index (MSI) and relative water content (RWC). While foliar application of GB was improved MSI and RWC and minimized EL. Proline content and antioxidant enzymes significantly increased in the response to NaCl stress as well as GB application.

Wydawca

-

Rocznik

Tom

76

Opis fizyczny

p.60-71,ref.

Twórcy

  • Agriculture Botany Department, Faculty of Agriculture, Zagazig University, Egypt
autor
  • Agriculture Botany Department, Faculty of Agriculture, Zagazig University, Egypt
  • Soil Science Department, Faculty of Agriculture, Zagazig University, Egypt

Bibliografia

  • [1] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239 250.
  • [2] R. Mittler, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci. 7 (2002) 405-410.
  • [3] C.H. Foyer, G. Noctor, Oxygen processing in photosynthesis: A molecular approach, New Phytol. 146 (2000) 359–388.
  • [4] H. Marschner, Mineral nutrition of higher plants, 2nd Ed., Academic Press, London, 1995.
  • [5] M.M. Rady, Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress, Sci. Hortic. 129 (2011) 232–237.
  • [6] E.M. Desoky, A.M. Merwad, M.M. Rady, Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance, Communications in Soil Science and Plant Analysis. 49(8) (2018) 967–983.
  • [7] P. Sudhir, S.D.S. Murthy, Effect of salt stress on basic process of photosynthesis. Photosynthetica 42 (2004) 481-486.
  • [8] P.C. Bethke, M.C. Drew, Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity, Plant Physiol. 99 (1992) 219–226.
  • [9] S. Kahrizi, M. Sedghi, O. Sofalian, Effect of salt stress on proline and activity of antioxidant enzymes in ten durum wheat cultivars. Ann. Biol. Res. 3 (2012) 3870–3874.
  • [10] D. Rhodes, A.D. Hanson, Quaternary ammonium and tertiary sulfonium compoundsin higher plants, Annu Rev Plant Physiol Plant Mol Biol. 44 (1993) 357–384.
  • [11] M.O.A. Rady et al., Up regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress, Scientia Horticulturae 240 (2018) 614–622.
  • [12] P.D. Hare, W.A. Cress, J. Van Staden, Dissecting the roles of osmolyte accumulation during stress. Plant, Cell Environ. 21(1998) 535–553.
  • [13] A. Sakamoto, N. Murata, The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants, Plant Cell Environ. 25 (2002) 163–171.
  • [14] F. Alasvandyari, B. Mahdavi, S. Hosseini Madah, Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings, Arch. Biol. Sci. 69 (2017) 139–147.
  • [15] M.A.A. Gadallah, Effects of proline and glycinebetaine on Vicia faba responses to salt stress, Biol. Plant. 42 (1999) 249–257.
  • [16] M.A. Hamdia, M.A.K. Shaddad, Salt tolerance of crop plants. J. Stress Physiol. Biochem. 6 (2010) 64–90.
  • [17] X. Yang, C. Lu, Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants, Physiol. Plant. 124 (2005) 343–352.
  • [18] C.M.L. Lopez, H. Takahashi, S. Yamazaki, Plant–water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine, J. Agron. Crop Sci. 188 (2002) 73–80.
  • [19] S.H. Raza,Athar, H.R. Ashraf, A. Hameed, Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 60 (2007) 368-376.
  • [20] M.M. Rady, V.C. Bhavya, S.M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci. Hortic. 162 (2013) 63-70.
  • [21] E.V Maas, G.J. Hoffman, Crop salt tolerance. Current assessment, Journal of Irrigation and Drainage 103(1997) 115–134.
  • [22] CIAT (Centro Internacional de Agricultura Tropical), Constraints to and opportunities for improving bean production. In: A planting document 1993–98 and achieving document (1992) 1987–92. CIAT, Cali. Colombia.
  • [23] A.A. Fadeels, Location and properties of chloroplasts and pigment determination in roots, Physiol. Plant. 15 (1962) 130-147.
  • [24] D. Von Wettstein, Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell. Res. 12 (1957) 427–506.
  • [25] R.L. Heath, L. Packer, Photoperoxidation isolated chloroplasts: kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics 125 (1968) 189–198.
  • [26] L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water stress studies, Plant and Soil. 39 (1973) 205-207.
  • [27] M.E. Jensen, Design and Operation of Farm Irrigation Systems. ASAE, Michigan, USA pp. (1983) 827.
  • [28] C.Y. Sullivan, W.M. Ross, Selecting the drought and heat resistance in grain sorghum. In: H. Mussel, R.C. Staples (Eds.), Stress Physiology in Crop Plants. John Wiley & Sons, New York, 1979, pp. 263–281.
  • [29] H.D. Barrs, P.E. Weatherley, A re-examination of the relative turgidity technique for estimating water deficits in leaves, Aust. J. Biol. Sci. 24 (1962) 519-570.
  • [30] B. Wolf, A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status, Commun. Soil Sci. Plant Anal. 13 (1982) 1035-1059.
  • [31] M. Lachica, A. Aguilar, J. Yanez, Analisis foliar. Métodos utilizados en la Estacion Experimental del Zaidin. An. Edafol. Agrobiol. 32 (1973) 1033-1047.
  • [32] H.D. Chapman, F.P. Pratt, Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants, and Water, 2nd ed. Agriculture Division, Calif. Univ., USA, (1982), pp. 169–170.
  • [33] F.S. Watanabe, S.R. Olsen, Test of ascorbic acid method for determine phosphorus in water and NaHCO3 extracts from soil, Soil Sci. Soc. Am., Proc. 29 (1965) 677–678.
  • [34] A.P. Vitoria, P.J. Lea, R.A. Azevado, Antioxidant enzymes responses to cadmium in radish tissues, Phytochem. 57 (2001) 701-710.
  • [35] B. Chance, A. C. Maehly, Assay of catalase and peroxidase. Methods in enzymology. 2 (1955) 764-775.
  • [36] R.L. Thomas, J.J. Jen, C.V. Morr, Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development, J. Food Sci. 47(1982) 158-161.
  • [37] J.L. Fielding, J.L. Hall, A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum, J. Expt. Bot. 29 (1978) 969-981.
  • [38] R.K. Sairam, K.V. Rao, G.C. Srivastava, Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci. 163 (2002) 1037-1046.
  • [39] R. Munns, M. Tester, Mechanism of salinity tolerance, Annu Rev Plant Biol. 59 (2008) 651–681.
  • [40] P.M. Hasegawa et al., Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 463-499.
  • [41] N.A.K.K. Sima et al., Genotype-dependent differential responses of three forage species to calcium supplement in saline conditions, J. Plant Nutr. 32 (2009) 579–597.
  • [42] A.A. Rodriguez et al., Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity, J. Expt. Bot. 55 (2004) 1383-1390.
  • [43] M. Ashraf, M.R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ Exp. Bot. 59 (2007) 206-216.
  • [44] J.K. Zhu, Plant salt tolerance, Trends Plant Sci. 6 (2001) 66-71.
  • [45] A.K. Parida, A.B. Das, Salt tolerance and salinity effects on plants: a review, Ecotox. Environ. Safe. 60 (2005) 324-349.
  • [46] E.M. Desoky, A.M. Merwad, A.S. Elrys, Response of Pea Plants to Natural Bio-stimulants Under Soil Salinity Stres. Am. J. Plant physiol. 12(1) (2017) 28-37.
  • [47] E.M. Desoky, A.S. Elrys, M.M. Rady, Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metalscontaminated saline soil, Ecotoxicology and Environmental Safety. 169 (2019) 50–60.
  • [48] P.C. Agboma et al., Effect of foliar application of glycine betaine on yield of drought-stressed tobacco plant, Exp. Agric. 33(1997) 345-352.
  • [49] N. Iqbal, M. Y. Ashraf, M. Ashraf, Influence of water stress and exogenous glycine betaine on sunflower achene weight and oil percentage, Int. J Environ. Sci. Technol. 2 (2005) 155-160.
  • [50] T. Demiral, I. Turkan, Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress, Environ. Exp. Bot. 56 (2006) 72–79.
  • [51] P. Mäkelä, J. Kärkkäinen, S. Somersalo, Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity, Biol. Plant. 43 (2000) 471-475.
  • [52] S.N. Mishra, I. Sharma, Putrescine as a growth inducer and as a source of nitrogen for mustard seedlings under sodium chloride salinity, Indian J. Expt. Physiol. 32 (1994) 916-918.
  • [53] M.A. Shaddad et al., Response of seeds of Lupinus termis and Vicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine, Plant Soil 122 (1990) 177-183.
  • [54] K. Shetty et al., Stimulation of benzyladenine-induced in vitro shoot organogenesis in Cucumus melo L. by proline, salicylic acid and aspirin, Plant Sci. 84 (1992) 193-199.
  • [55] J.A. Hernández, M.S. Almansa, Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves, Physiol. Plantarum 115 (2002) 251-257.
  • [56] D.J. Allen et al., Analysis of the limitation to CO2 assimilation to exposure of leaves of two Brassica napus cultivars to UV-B, Plant Cell Environ. 20 (1997) 633-640.
  • [57] M.A. Hoque et al., Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells, J. Plant Physiol. 164 (2007) 1457-1468.
  • [58] D.A. Meloni, C.A. Martınez, Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings, Braz. J. Plant Physiol. 21 (2009) 233–241.
  • [59] K.R. Chandrasekhar, S. Sandhyarani, Salinity induced chemical changes in Crotalaria striata DC plants, Indian J. Plant Physiol. 1 (1996) 44-48.
  • [60] B. Heuer, Influence of exogenous application of proline and glycineb etaine on growth of salt-stressed tomato plants, Plant Sci.165 (2003) 693–699.
  • [61] P.B.K. Kishor et al., Review: regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance, Curr. Sci. 88 (2005) 424-438.
  • [62] S.M. Howladar, A novel Moringa oleifera leaf extract can mitigate the stress effect of salinity and cadmium in bean (Phaseolus vulgaris L.) plants, Ecotoxicology and Environmental Safety. 100 (2014) 69-75.
  • [63] P. Stępień, G. Kłobus, Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress, Biol. Plant. 50 (2006) 610-616.
  • [64] J.T. Prisco, Alguns aspectos da fisiologia do estresse salino. Revista Brasileira de Botânica 3 (1980) 85-94.
  • [65] S. Trapp et al., A phytotoxicity test using transpiration of willows, Arch. Environ. Contam. Toxicol. 39 (2000) 154-160.
  • [66] S. Trapp et al., Plant uptake of NaCl in relation to enzyme kinetics and toxic effects, Environ. Exp. Bot. 64 (2008) 1–7.
  • [67] P.K. Wahome, Mechanisms of salt stress tolerance in two rose rootstocks, Rosa chinensis 'Major' and R. rubiginosa, Sciencia Horticulturae. 87 (2001) 207-216.
  • [68] M. Tester, R. Davenport, Na+ tolerance and Na+ transport in higher plants, Ann. Bot. 91 (2003) 503-527.
  • [69] E. Epstein, A.J. Bloom, Mineral Nutrition of Plants, Principles and Perspectives. 2nd Edn. Sunderland, MA. Sinauer Associates, 2005.
  • [70] S.R. Grattan, C.M. Grieve, Mineral nutrient acquisition and response of plants grown in saline environments, in: M. Pessarakli (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker Press Inc., New York, 1999, pp. 203-229.
  • [71] G.R. Cramer, E. Epstein, A. Läuchli, Effects of sodium, potassium and calcium on salt-stressed barley. 2. Elemental analysis. Physiologia Plantarum. 81 (1991) 197–202.
  • [72] N. Shabala, L. Shabala, E. Van Volkenburgh, Effect of calcium on root development and root ion fluxes in salinised barley seedlings, Funct. Plant Biol. 30 (2003) 507-514.
  • [73] T.A. Cuin et al., Potassium activities in cell compartments of salt-grown barley leaves. J. Expt. Bot. 54 (2003) 657–661.
  • [74] I. Gómez et al., Salinity and nitrogen fertilization affecting the macronutrient content and yield of sweet pepper plants, J. Plant Nutr. 19 (1996) 353-359.
  • [75] M.A. Sobahan et al., Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na⁺ uptake in rice seedlings, Biosci. Biotechnol. Biochem. 73 (2009) 2037-2042.
  • [76] S. Rahman, H. Miyake, Y. Takeoka, Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.), Plant Prod. Sci. 5 (2002) 33-44.
  • [77] T.A. Cuin, S. Shabala, Potassium efflux channels mediate arabidopsis root responses to reactive oxygen species and the mitigating effect of compatible solutes, Plant Cell Environ. 7 (2007) 875-885.
  • [78] M.A. Hoque et al., Exogenous proline mitigates the detrimental effects of salt stress more than exogenous glycine betaine by increasing antioxidant enzyme activities, J. Plant Physiol. 164 (2007) 553-561.
  • [79] K. Nawaz, M. Ashraf, Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress, J. Agron. Crop Sci. 196 (2010) 28–37.
  • [80] A. Parvaiz, S. Satyawati, Salt stress and phyto-biochemical responses of plants A review, Plant Soil Environ. 54 (2008) 89–99.
  • [81] M. Hasanuzzaman et al., Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties, Biomed. Res. Int. 2014.
  • [82] T.H.H. Chen, N. Murata, Glycinebetaine: an effective protectant against abiotic stress in plants, Trends Plant Sci. 13 (2008) 499–505.
  • [83] T. Demiral, I. Türkan, Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161 (2004) 1089–1100.

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-2149ee7a-80c0-40fa-a049-55ec892ba6e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.