PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 65 |

Tytuł artykułu

Osmotic adaptation of Quercus robur L. under water stress in stands with different tree density - relation with groundwater table

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Solute accumulation in plant leaves during drought through accumulation of organic compounds is known to compensate turgor loss andpromote higher stomatal conductance at lower water potentials. Recent studies have involved experiments on saplings and younger stands, while evidence of osmotic adjustment in adult pedunculate oak under natural stand conditions on different sites is scarce. Pressure volume curves technique was used to define differences in osmotic potential – water stress adaptation – of 120 year oldped unculate oak trees in two managedforest complexes andin virgin forest remnant. Tree response between the managedstandafter thinning andthe standwithout any silvicultural measures within same forest complex was also compared during summer months in two consecutive (dry and favourable) years with groundwater table. Significant differences were observed in adaptation between forest complexes and during dry (2003) and favourable (2004) years. Osmotic component of thinnedforest was the highest, showing most negative values of stress adjustment. Measured values on all plots responded well to drop in groundwater table, especially in pronounced drought conditions. Such response may be in relation with lower stand density and increased individual space for growth in thinned stand. Adult oaks did not loose their ability to water stress adaptation, in spite of their age and progressively decreasing health conditions.

Wydawca

-

Czasopismo

Rocznik

Tom

65

Opis fizyczny

p.29-36,fig.,ref.

Twórcy

autor
  • Slovenian Forestry Institute, Vecna pot 2, 1000, Ljubliana, Slovenia

Bibliografia

  • Anonymous. 1994. Manual on methods and criteria for harmonizedsampling, assessment, monitoring andanalysis of the effects of air pollution on forests. UN / ECE, Hamburg, pp. 177
  • Abrams M.D. 1988. Sources of variation in osmotic potentials with special reference to North American tree species. Forest Science 34: 1030–1046.
  • Aranda I., Gil L., Pardos J. 1996. Seasonal water relations of three broadleaved species Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Wind. in a mixed stand in the centre of the Iberian Peninsula. Forest Ecology and Management 84: 219–229.
  • Aussenac G. 1978. La sécheresse de 1976 : influences des deficits hydriques sur la croissance des arbres forestiers. Revue Forestière Française 30: 103–114.
  • Becker M., Levy G. 1982. Le dépérissement du chęne en foręt du Tronçais. Les causes écologiques. Annales des Sciences Forestières 39: 439–444.
  • Breda N., Cochard H., Dreyer E., Granier A. 1993. Water transfer in a mature oak stand (Q.petraea): seasonal evolution andeffects of a severe drought. Canadian Journal of Forrest Research 23: 136–1143.
  • Canny M.J. 1998. Transporting water in plants. American Scientist 86:152–159.
  • CochardH., Breda N., Granier A. 1996. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Annales des Sciences Forestières 53: 197–206.
  • Corcuera L., Camarero J.J., Gil-Pelegrín E. 2002. Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16: 465–472.
  • Cater M., Simoncic P., Batic F. 1999. Pre-dawn water potential andnutritional status of pedunculate oak (Quercus robur L.) in the north-east of Slovenia. Phyton (Horn) 39: 13–22.
  • Cater M. 2003. Pedunculate oak (Quercus robur L.) crown defoliation-changes on permanent research plots. Ekológia (Bratislava) 22: 430–443.
  • Cater M., Batic F. 2006. Groundwater and light conditions as factors in the survival of pedunculate oak (Quercus robur L.) seedlings. European Journal of Forest Research, 125: 419–426.
  • Cavlović J., Božić M., Teslak K. 2006. Ophodnja i obrast pri planiranju gospodarenja šumama hrasta lužnjaka u uvjetima narušene strukture sastojina. = Rotation andd ensity in planning the management of Pedunculate oak forests under conditions of a disturbed stand structure. In: Matić, S., Anić, I. (eds). Proceedings, Forests of pedunculate oak in changed site and management conditions, Croatian Acedemy of Science and Arts, p. 23–37.
  • Dickson R.E., Tomlinson P.T. 1996. Oak growth, development andcarbon metabolism in response to water stress. Annales des Sciences Forestières 53: 181–196.
  • Dreyer E., Bousquet F., Ducrey M. 1990. Use of pressure volume curves in water relation analysis on woody shoots: influence of rehydration and comparison of four European oak species. Annales des Sciences Forestières 47: 285–297.
  • Epron D., Dreyer E. 1996. Starch andsoluble carbohydrates in leaves of water-stressed oak saplings. Annales des Sciences Forestières 53: 263–268.
  • Hanson A.D., Hitz W.D. 1982. Metabolic responses of mesophytes to plant water deficits. 33: 163–203.
  • Hinckley T.M., Duhme F., Hinckley A.R., Richter H. 1980. Water relations of drought hardy shrubs: osmotic potential andstomatal reactivity. Plant Cell and Environment 3: 131–140.
  • Holbrook N.M., Zwieniecki M.A. 1999. Embolism repair andxylem tension: do we needa miracle? Plant Physiology 120: 7–10.
  • Jefferies R.L. 1981. Osmotic adjustment and the response of halophytic plants to salinity. Bioscience 31: 42–46.
  • Kramer P.J. 1969. Plant andSoii Water Relationships: A Modem Synthesis. McGraw-Hill, New York, NY, USA.
  • Larcher W. 1995. Physiological plant ecology. – Ecophysiology andstress physiology of functional groups – Berlin, Springer-Verlag, 506 p.
  • Levanic T., Cater M. 2007. Relationship between climate, crown transparency andrad ial increment in pedunculate oak (Quercus robur L.) in eastern Slovenia. In: Jurc, M. (ed.). Climate change: impact on forest andforestry, Studia forestalia Slovenica, No. 130 Ljubljana: Biotechnical Faculty, Department of Forestry and Renewable Forest Resources Slovenia, 2007, 429–443.
  • Matić S., 2009. Gospodarenje šumama hrasta lužnjaka (Quercus robur L.) u promjenjenim stanišnim i strukturnim uvjetima. = Managing forests of pedunculate oak (Quercus robur L.) in changedsite conditions. In: Matić, S., Anić, I. (eds). Proceedings, Forests of pedunculate oak in changedsite andmanagement conditions, Croatian Acedemy of Science and Arts, p. 1–22.
  • Methy M., Damesin, C., Rambal, S. 1996. Drought and photosystem II activity in two Mediterranean oaks. Annales des Sciences Forestières 53: 255–262.
  • Morgan J.M. 1984. Osmoregulation andwater stress in higher plants. Annual Review of Plant Physiology 35: 299–319.
  • Ni B.R., Pallardy S.G. 1991. Response of gas exchange to water stress in seedldings of woody angiosperms. Tree Physiology 8: 1–9.
  • Osonubi O., Davies W.J. 1978. Solute accumulation in leaves androots of woody plants subjectedto water stress. Oecologia (Berl.) 32: 323–332.
  • Pallardy S.G. 1989. Hydraulic architecture and conductivity: an overview. In: Kmeb K.H., Richter, H., andHinckley, T.M. (eds), Structural and Functional Responses to Environmental Stresses: Water Shortage. SPB Academic Publishhig,The Hague, pp. 3–19.
  • Parker W.C., Pallardy, S.G., Hinckley, T.M., Teskey, R.O.1982. Seasonal changes in tissue water relations of three woody species of the Quercus-Carya forest type. Ecology 63: 1259–1267.
  • Scholander P.F., Bradstreet E.D., Hemmingsen E.A., Hammel H.T. 1965. Sap pressures in vascular plants. Science 148: 339–346.
  • Talbot A.J.B., Tyree M.T., Dainty J. 1975. Some notes concerning the measurement of water potentials of leaf tissue with specific reference to Tsuga canadensis and Picea abies. Canadian Journal of Botany 53: 784–788.
  • Timbal J., Aussenac G. 1996. An overview of ecology and silviculture of indigenous oaks in France. Annales des Sciences Forestières 53: 649–661.
  • Tognetti R., Giovannelli A., Longobucco A., Miglietta F., Raschi A. 1996. Water relations of oak species growing in the natural CO2 spring of Rapolano (cental Italy). Annales des Sciences Forestières 53: 475–485.
  • Triboulot M.B., Fauveau M.L., Breda N., Label S., Dreyer E. 1996. Stomatal conductance and xylemsap abscisic acid(ABA) in adult oak trees during a gradually imposed drought. Annales des Sciences Forestières 53: 207–220.
  • Turner N.C., Jones M.M. 1980. Turgor maintenance by osmotic adjustment: A review and evaluation. In: Adaptation of Plants to Water and High Temperature Stress. Turner, N.C., Kramer, P.J. (eds), John Wiley and Sons, London, p. 87–103.
  • Tyree M.T., CochardH. 1996. Summer andwinter embolism in oak: impact on water relations. Annales des Sciences Forestières 53: 173–180.
  • Tyree M.T., Hammel H.T. 1972. The measurement of the turgor pressure andwater relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23: 267–282.
  • Vivin P., Guehl J.M., Clement A., Aussenac G. 1996. The effects of elevatedCO 2 andwater stress on whole plant CO2 exchange, carbon allocation and osmoregulation in oak seedlings. Annales des Sciences Forestières 53: 447–459.
  • Zwieniecki M.A., Holbrook N.M. 2000. Bordered pit structure vessel wall surface properties. Implications from embolism andrepair. Plant Physiology 123: 1015–1020.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-210b7ee5-1066-435a-9680-2bfed69a5fce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.