PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 61 | 3 |

Tytuł artykułu

Taphonomy of a clypeasteroid echinoid using a new quasimetric approach

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new quasimetric approach is used to statistically analyze taphonomic data from a commonly occurring shallow water clypeasteroid echinoid in order to obtain metric equivalent measurements of taphonomic alteration on an interval-like scale. This technique takes the character condition as well as its proportion into account and translates the taphonomic alteration into data, which behave as interval scaled and thus allows for the use of parametric as well as non-parametric statistics. Tests of Echinocyamus pusillus from Giglio Island (Mediterranean Sea, Italy) were analyzed with respect to a suite of taphonomic features including abrasion of the test surface, tubercles, ambulacral and genital pore margins as well as, if present, the outline and cross section of predatory drillholes. The degree of fragmentation and encrustation was also determined. Taphonomic features were analyzed using a semi-quantitative approach with three degrees of test alteration including non-altered, moderately altered, and highly altered which were statistically analyzed using non-parametric statistics due to highly non-normal distributed data. Abrasion intensities vary among different surface characters, with exposed areas of the test showing higher abrasion intensities than sheltered areas. Fragmentation occurs in low frequencies (7%) and fractures in the tests are almost absent (1.7%). Encrustation rates by bryozoans and serpulids can cover up to 80% of the test surface, but vary strongly among individuals and sample sites. Encrustation is independent of test size and prolongs overall test survival by crossing plate boundaries. The presence of drillholes in decreasing test preservation potentials is discussed with respect to analytical parameters.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.689-699,fig.,ref.

Twórcy

Bibliografia

  • Allison, P.A. 1990. Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data. Palaios 5: 432–440.
  • Belaústegui, Z., Gibert, J.M. de, Nebelsick, J.H., Domènech, R., and Martinell, J. 2013.Clypeasteroid echinoid tests as benthic islands for gastrochaenid bivalve colonization: Evidence from the Middle Miocene of Tarragona (North-East Spain). Palaeontology 56: 783–796.
  • Behrensmeyer, A.K., Kidwell, S.M., and Gastaldo, R.A. 2000. Taphonomy and paleobiology. Paleobiology 26: 103–147.
  • Borszcz, T. 2012. Echinoids as substrates for encrustation: review and quantitative analysis. Annales Societatis Geologorum Poloniae 82: 139–149.
  • Borszcz, T., Kuklinski, P., and Zatoń, M. 2013. Encrustation patterns on Late Cretaceous (Turonian) echinoids from southern Poland. Facies 59: 299–318.
  • Brett, C.E. and Gordon, C.B. 1986. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1: 207–227.
  • Bromley, R.G. 1981. Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geològica Hispànica 16: 55–64.
  • Ceranka, T. and Złotnik, M. 2003. Traces of cassid snails predation upon the echinoids from the Middle Miocene of Poland. Acta Palaeontologica Polonica 48: 491–496.
  • Clasen, D.L. and Dormody, T.J. 1994. Analyzing data measured by individual Likert-Type items. Journal of Agricultural Education 35: 31–35.
  • Daly, M.A. and Mathieson A.C. 1977. The effects of sand movement on intertidal seaweeds and selected invertebrates at Bound Rock, New Hampshire, USA. Marine Biology 43: 45–55.
  • Donovan, S.K. 1991. The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment. In: S.K. Donovan (ed.), The Process of Fossilization, 241–269. Belhaven Press, London.
  • El-Hedeny, M. 2007. Encrustation and bioerosion on Middle Miocene bivalve shell and echinoid skeletons: Paleoenvironmental implications. Revue de Paléobiologie 26: 381–389.
  • Flessa, K.W., Cutler, A.H., and Meldahl, K.H. 1993. Time and taphonomy: Quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19: 266–286.
  • Fürsich, F.T. and Aberhan, M. 1990. Significance of time-averaging for palaeocommunity analysis. Lethaia 23: 143–152.
  • Ghiold, J. 1982. Observations on the clypeasteroid Echinocyamus pusillus (O.F. Müller). Journal of Experimental Marine Biology and Ecology 61: 57–74.
  • Grun, T.B. and Nebelsick, J.H. 2015. Sneaky snails: How drillholes can affect paleontological analyses of the minute clypeasteroid echinoid Echinocyamus? In: S. Zamora and I. Rábano (eds.), Progress in Echinoderm Paleobiology, 71–73. Publicaciones del Instituto Geológico y Minero de España, Madrid.
  • Grun, T.B., Sievers, D., and Nebelsick, J.H. 2014. Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy). Historical Biology 26: 745–757.
  • Hauser, I., Oschmann, W., and Gischler, E. 2008. Taphonomic signatures on modern Caribbean bivalve shells as indicators of environmental conditions (Belize, Central America). Palaios 23: 586–600.
  • Kelley, P.H. 2008. Role of bioerosion and taphonomy: Effect of predatory drillholes on preservation of mollusc shells. In: M. Wisshak and L. Tapanila (eds.), Current Developments in Bioerosion, 451–470. Springer, Berlin.
  • Kidwell, S.M. and Baumiller, T. 1990. Experimental disintegration of regular echinoids: Roles of temperature, oxygen, and decay thresholds. Paleobiology 16: 247–271.
  • Kidwell, S.M. and Bosence, D.W.J. 1991. Taphonomy and time-averaging of marine shelly faunas. In: P.A. Allison and D.E.G. Briggs (eds.), Taphonomy: Releasing Data Locked in the Fossil Record, Topics in Geobiology, Volume 9, 115–209. Plenum Press, New York.
  • Klompmaker, A.A. 2009. Taphonomic bias on drill-hole predation intensities and paleoecology of Pliocene mollusks from Langenboom (Mill), The Netherlands. Palaios 24: 772–779.
  • Kowalewski, M. 1996. Time-averaging, overcompleteness, and the geological record. Journal of Geology 104: 317–326.
  • Kowalewski, M. and Nebelsick, J.H. 2003. Predation on recent and fossil echinoids. In: P.H. Kelley, M. Kowalewski, and T.A. Hansen (eds.), Predator-Prey Interactions in the Fossil Record, 1–20, Kluwer Academic/Plenum Publishers, New York.
  • Lawrence, D.R. 1968. Taphonomy and information losses in fossil communities. Geological Society of America Bulletin 79: 1315–1330.
  • McKinney, F. and Jackson, J. 1989. Bryozoan Evolution. 238 pp. Unwin Hyman, Boston.
  • Meldahl, K.H. and Flessa, K.W. 1990. Taphonomic pathways and comparative biofacies and taphophacies in Recent intertidal/shallow shelf environment. Lethaia 23: 43–60.
  • Mortensen, T.H. 1927. Handbook of the Echinoderms of the British Isles. 498 pp. Humphrey Milford Oxford University Press, London.
  • Mortensen, T.H. 1948. A Monograph of the Echinoidea IV.2 Clypeasteroida. 471 pp. C.A. Reitzel. Copenhagen.
  • Nachar, N. 2008. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutorials in Quantitative Methods for Psychology 4: 13–20.
  • Nebelsick, J.H. 1995. Comparative taphonomy of clypeasteroids. Ecological Geology of Helvetia 88: 685–693.
  • Nebelsick, J.H. 1999a. Taphonomic comparison between Recent and fossil sand dollars. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 349–358.
  • Nebelsick, J.H. 1999b. Taphonomy of Clypeaster fragments: preservation and taphofacies. Lethaia 32: 241–252.
  • Nebelsick, J.H. 2004. Taphonomy of echinoderms: Introduction and outlook. In: T. Heinzeller and J.H. Nebelsick (eds.), Echinoderms–München, 471–477. Taylor and Francis Group, London.
  • Nebelsick, J.H. 2008. Taphonomy of the irregular echinoid Clypeaster humilis from the Red Sea: Implications for taxonomic resolutions along taphonomic grades. In: W.I. Ausich and G.D. Webster (eds.), Echinoderm Paleobiology, 114–128. Indiana University Press, Bloo mington.
  • Nebelsick, J.H. and Kampfer, S. 1994. Taphonomy of Clypeaster humilis and Echinodiscus auritus from the Red Sea. In: B. David, A. Guille, J.P. Féral, and M. Roux (eds.), Echinoderms Through Time, 803–808. Balkema, Rotterdam.
  • Nebelsick, J.H. and Kowalewski, M. 1999. Drilling predation on recent clypeasteroid echinoids from the Red Sea. Palaios 14: 127–144.
  • Nebelsick, J.H., Dynowski, J.F., Grossmann J.N., and Tötzke, C. 2015. Echinoderms: hierarchically organized light weight skeletons. In: C. Hamm (ed.), Evolution of Lightweight Structures: Analyses and Technical Applications, Biologically-Inspired Systems, 141–156. Springer Verlag, Heidelberg.
  • Nebelsick, J.H., Schmid, B., and Stachowitsch, M. 1997. The encrustation of fossil and recent sea-urchin tests: Ecological and taphonomic signifi cance. Lethaia 30: 271–284.
  • Nichols, D. 1959. The histology and activities of the tube-feet of Echino cyamus pusillus. Quarterly Journal of Microscopical Science 100: 539–555.
  • Parsons, K.M. and Brett, C.E. 1991. Taphonomic processes and biases in modern marine environments: An actualistic perspective on fossil assemblage preservation. In: S.K. Donovan (ed.), The Processes of Fossilization, 22–65. Columbia University Press, New York.
  • Perry, C.T. 2000. Factors controlling sediment preservation on a north Jamaican fringing reef: a process-based approach to microfacies analysis. Journal of Sedimentary Research 70: 633–648.
  • Rodland, D.L., Kowalewski, M., Carroll, M., and Simões, M.G. 2004. Colonization of a “Lost World”: encrustation patterns in modern subtropical brachiopod assemblages. Palaios 19: 381–395.
  • Santos, A.G. and Mayoral, E.J. 2008. Colonization by barnacles on fossil Clypeaster: an exceptional example of larval settlement. Lethaia 41: 317–332.
  • Schäfer, W. 1962. Aktuopaläontologie nach Studien in der Nordsee. 666 pp. Waldemar Kramer, Frankfurt.
  • Schein, J.P. and Lewis, R.D. 2001. The relationship between living echinoid populations and their skeletal remains in the sea-floor sediment, San Salvador, Bahamas. In: B.J. Greenstein and C.K. Carney (eds.), Proceedings of the 10th Symposium on the Geology of the Bahamas and other Carbonate Regions, 163–174. Gerace Research Center, San Salvador Island.
  • Seilacher, A. 1979. Constructional morphology of sand dollars. Paleo biology 5: 191–221.
  • Smith, A.B. 1980. The structure and arrangement of echinoid tubercles. Philo sophical Transactions of the Royal Society, London, Series B 289: 1–54.
  • Smith, A.B. 1981. The stereom microstructure of the echinoid test. Special Papers in Palaeontology 25: 1–85.
  • Smith, A.B. 1984. Echinoid palaeobiology. 190 pp. George Allen and Unwin, London.
  • Stachowitsch, M. 1980. The epibiotic and endolithic species associated with the gastropod shells inhabited by the hermit crabs Paguristes oculatus and Pagurus cuanensis. Publicazioni della Stazione Zoologica di Napoli: Marine Ecology 1: 73–101.
  • Telford, M. 1985. Structural analysis of the test of Echinocyamus pusillus (O.F. Müller). In: B.F. Keegan and B.D.S. O’Conner (eds.), Proceedings of the Fifth International Echinoderm Conference, Ireland 1984, 353–360. Balkema, Rotterdam.
  • Telford, M., Harold, A.S., and Mooi, R. 1983. Feeding structures, behavior, and microhabitat of Echinocyamus pusillus (Echinoidea: Clypeasteroida). Biological Bulletin 165: 745–757.
  • Wilson, M.V.H. 1988. Taphonomic processes: information loss and information gain. Geoscience Canada 15: 131–148.
  • Złotnik, M. and Ceranka, T. 2005. Patterns of drilling predation of cassid gastropods preying on echinoids from the Middle Miocene of Poland. Acta Palaeontologica Polonica 50: 409–428.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-20651066-08a5-45e7-b298-49eb62143c5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.