Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 2 |
Tytuł artykułu

Soil organic carbon accumulation in arid and semiarid areas after afforestation: a meta-analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The rate and factors determining changes in the soil carbon pool after afforestation are still poorly understood, especially in arid and semiarid areas. This paper provides a review of the influence effect of afforestation on soil organic carbon (SOC) stocks based on a meta-analysis of 37 publications (including a total of 116 observations in the past 10 years), with the aim of exploring the major factors that can affect changes in soil carbon stocks after afforestation in arid and semiarid areas. This meta-analysis, which was based on a mixed linear model, indicates that the main factors that contribute to SOC accumulation after afforestation are previous land use, plantation age, mean annual precipitation, and mean annual temperature. It suggests that bare areas are the most suitable areas for afforestation, and that regions with precipitation of 250-400 mm and mean annual temperatures of 7.5-15ºC have a greater impact on an area’s capacity to accumulate SOC following afforestation. It shows that more SOC can be accumulated with the increase of plantation age. However, it also shows that plant species significantly affect SOC accumulation. This research will contribute to the development of policies of environment management and the models concerned with quantifying amounts of soil carbon sequestered by afforestation in these areas.
Słowa kluczowe
Opis fizyczny
  • College of Soil and Water Conservation, Beijing Forestry University, 35 East Qinghua Road Haidian District, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
  • College of Soil and Water Conservation, Beijing Forestry University, 35 East Qinghua Road Haidian District, Beijing 100083, China
  • College of Soil and Water Conservation, Beijing Forestry University, 35 East Qinghua Road Haidian District, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
  • College of Soil and Water Conservation, Beijing Forestry University, 35 East Qinghua Road Haidian District, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
  • 1. IPCC. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK/New York, USA, 2007.
  • 2. GOWER S.T. Patterns and mechanisms of the forest carbon cycle. Annual Review of Environment and Resources. 28, 169, 2003.
  • 3. HOUGHTON R.A. Above ground forest biomass and the global carbon balance. Glob. Change Biol. 11, 945, 2005.
  • 4. LACLAU P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. Forest Ecol. Manag. 180, 317, 2003.
  • 5. NOSETTO M.D., JOBBAGY E.G., PARUELO J.M. Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J. Arid Environ. 67, 142, 2006.
  • 6. KIRSCHBAUM M.U.F., GUO L.B., GIFFORD R.M. Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. Forest Ecol. Manag. 255, 2990, 2008.
  • 7. GUO L.B., GIFFORD R.M. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345, 2002.
  • 8. PAUL K.I., POLGLASE P.J., KHANNA P.K. Change in soil carbon following afforestation. Forest Ecol. Manag. 168, 241, 2002.
  • 9. LAGANIERE J., ANGERS D A., PARE D. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob. Change Biol. 16, 439, 2010.
  • 10. BECHTOLD H.A., INOUYE R.S. Distribution of carbon and nitrogen in sagebrush steppe after six years of nitrogen addition and shrub removal. J. Arid Environ. 71, 122, 2007.
  • 11. RASMUSSEN C. Distribution of soil organic and inorganic carbon pools by biome and soil Taxa in Arizona. Soil Sci. Soc. Am. J. 70, 256, 2006.
  • 12. ROTENBERG E., YAKIR D. Contribution of semi-arid forests to the climate system. Science. 327, 451, 2010.
  • 13. IMHOFF M.L., BOUNOUA L., LOUCKS C., HARRISS R., LAWRENCE W.T. Global patterns in human consumption of net primary production. Nature. 429, 870, 2004.
  • 14. BOUWMAN A.F., LEEMANS R. The role of forest soils in the global carbon cycle. In: Carbon forum and functions in forest soils (Eds. McFee W, Kelly JM), pp. 503-525. Soil Sci. Soc. Am. J., Madison, WI, 1995.
  • 15. SIX J., ELLIOTT T., PAUSTAIN K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350, 1999.
  • 16. GALDO I.D., SIX J., PERESSOTTI A., COTRUFO M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob. Change Biol. 9, 1204, 2003.
  • 17. TAN, Z.H., ZHANG, Y.P., SCHAEFER D., YU G.R., LIANG N.S., SONG Q.H. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos. Environ. 45, 1548, 2011.
  • 18. JACKSON R.B., BANNER J.L., JOBBAGY E.G., POCKERMAN W.T., WALL D.H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature. 418, 623, 2002.
  • 19. WEI X.R., SHAO M.A., FU X.L., HONTON R., LI Y., ZHANG X.C. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry. 96, 149, 2009.
  • 20. RITTER E. Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant Soil. 295, 239, 2007.
  • 21. LAL R. Forest soils and carbon sequestration. Forest Ecol. Manag. 220, 242, 2005.
  • 22. HU Y.L., ZENG D.H., FAN Z.P., AI G.Y. Effects of degraded sandy grassland afforestation on soil quality in semiarid area of Northern China. Chinese Journal of Applied Ecology. 18, 2391, 2007.
  • 23. WANG Y.F., FU B.J., LV Y.H., CHEN L.D. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena. 85, 58, 2011.
  • 24. YVKSEK T., YVKSEK F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey. Catena. 84, 47, 2011.
  • 25. JEDDI K., CORTINA J., CHAIEB M. Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. J. Arid Environ. 73, 1005, 2009.
  • 26. WHEELER C.W., AGCHER S., ANSER G.P., MCMUTRY C.R. Climatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland. Ecol. Appl. 17, 1911, 2007.
  • 27. BAI Y.G., COLBERG T., ROMO J.T., MCCONKEY B., PENNOCK D., FARRELL R. Does expansion of western snowberry enhance ecosystem carbon sequestration and storage in Canadian Prairies? Agr. Ecosyst. Environ. 134, 269, 2009.
  • 28. PINNO B.D., BELANGER N. Ecosystem carbon gains from afforestation in the Boreal Transition ecozone of Saskatchewan (Canada) are coupled with the devolution of Black Chernozems. Agr. Ecosyst. Environ. 123, 56, 2008.
  • 29. LIU X., LI F.M., LIU D.Q., SUN G.J. Soil organic carbon, carbon fractions and nutrients as affected by land use in semi-arid region of Loess Plateau of China. Pedosphere. 20, 146, 2010.
  • 30. WOOMER P.L., TOURE A., SALL M. Carbon stocks in Senegal’s Sahel transition zone. J. Arid Environ. 59, 499, 2004.
  • 31. BONINO E.E. Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina. Forest Ecol. Manag. 223, 183, 2006.
  • 32. CHEN F.S., ZENG D.H., FAHEY T.J., LIAO D.F. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Appl. Soil Ecol. 44, 42, 2010.
  • 33. JIAO Y., XU Z., ZHAO J.H. Effects of grassland conversion to cropland and forest on soil organic carbon and dissolved organic carbon in the farming-pastoral ecotone of Inner Mongolia. Acta Ecologica Sinica. 29, 150, 2009.
  • 34. LLORENTE M., GLASER M., TURRION M.B. Storage of organic carbon and Black carbon in density fractions of calcareous soils under different land uses. Geoderma. 159, 31, 2010.
  • 35. BIRD S.B., HERRICKA J.E., WANDER MM, WRIGHT S.F. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ. Pollut. 116, 445, 2002.
  • 36. HBIRKOU C., MARTIUS C., KHAMZIAN A., LARMERS J.P.A., WELP G, AMELUNG W. Reducing topsoil salinity and raising carbon stocks through afforestation in Khorezm, Uzbekistan. J. Arid Environ. 75, 146, 2011.
  • 37. OMARY A.A. Effects of aspect and slope position on growth and nutritional status of planted Aleppo pine (Pinus halepensis Mill.) in a degraded land semi-arid areas of Jordan. New Forest. 42, 285, 2011.
  • 38. FERNANDEZ O.E., SERRANO L.R., JIMENEZ M.N., NAVARRO F.B., DIES M., FERNANDEZ J., MARTINEZ F.J. ROCA A., AGUILAR J. Afforestation improves soil fertility in south-eastern Spain. Eur. J. Forest Res. 129, 707, 2010.
  • 39. QIU L.P., ZHANG X., CHEN J.M, YIN X.Q. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil. 32, 207, 2010.
  • 40. LIU Z.P., SHAO M.A., WANG Y.Q. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agr. Ecosyst. Environ. 142, 184, 2011.
  • 41. MAO R., ZENG D.H. Changes in soil particulate organic matter, microbial biomass, and activity following afforestation of marginal agricultural lands in a Semi-Arid area of Northeast China. Environ. Manage. 46, 110, 2010.
  • 42. CHEN L.D., GONG J., FU B.J., HUANG Z.L., HUANG Z.L., GUI L.D. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecology Restoration. 22, 641, 2007.
  • 43. Fu B.J., CHEN L.D., MA K.M., ZHOU H.F., WANG J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena. 39, 69, 2000.
  • 44. ZUCCA C., JULITTA F., PREVITALI F. Land restoration by fodder shrubs in a semi-arid agro-pastoral area of Morocco. Catena. 87, 306, 2011.
  • 45. NAVARRO A.R., BARBERA G.G., NAVARRO J.A., ALBALADEJO J., CASTILLO V.M. Soil dynamics in Pinus halepensis reforestation: Effect of microenvironments and previous land use. Geoderma. 153, 353, 2009.
  • 46. GRUNZWEIG J.M., GELFAND I., YAKIR D. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences. 4, 891, 2007.
  • 47. HU Y.L., ZENG D.H., FAN Z.P., AI G.Y. Effects of degraded sandy grassland afforestation on soil quality in semiarid area of Northern China. Chinese Journal of Applied Ecology. 18, 2391, 2007.
  • 48. SPRINGSTEEN A., LOYA W., LIEBIG M., HENDRICKSON J. Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota. Plant Soil. 328, 369, 2010.
  • 49. MAESTRE F.T., BOWKER M.T., PUCHE M.D., BOWKER M., HINOJOSA M.B., MART I., GARC P., CASTILLO A.P., SOLIVERES S., LUZURIAGA A.L., SA.M., CARREIRA J.A., GALLARDO A., ESCUDERO A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12, 930, 2009.
  • 50. JIN H.M., SUN O.J., LUO Z.K., LIU J. Dynamics of soil respiration in sparse Ulmus pumila woodland under semiarid climate. Ecol Res. 24, 731, 2009.
  • 51. SMAL H., OLSZEWSKA M. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil. 305, 171, 2008.
  • 52. SARTORI F., LAL R. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agr. Ecosyst. Environ. 122, 325, 2007.
  • 53. GOBERNA M., SANCHEZ J., PASCUAL J.A., GRACIA C. Pinus halepensis Mill. plantations did not restore organic carbon, microbial biomass and activity levels in a semi-arid Mediterranean soil. Appl. Soil Ecol. 36, 107, 2007.
  • 54. TOMOR O.S., MINHAS P.S., SHARMA V.K., SINGH Y.P., GUPTA RK. Performance of 31 tree species and soil conditions in a plantation established with saline irrigation. Forest Ecol. Manag. 177, 333, 2003.
  • 55. ARREOLAA G.H., HERRERAC Y., REYES B.G., DENDOOVEN L. Mesquite (Prosopis juliflora (Sw.) DC.), huisache (Acacia farnesiana (L.) Willd.) and catclaw (Mimosa biuncifera Benth.) and their effect on dynamics of carbon and nitrogen in soils of the semi-arid highlands of Durango Mexico. J. Arid Environ. 69, 583, 2007.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.