PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 66 |

Tytuł artykułu

Growth of two blue-stain fungi associated with Tetropium beetles in the presence of callus cultures of Picea abies

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The callus tissue can be used to evaluate the potential ability of microorganisms to cause disease. The blue-stain fungi, Grosmannia piceiperda and Ophiostoma tetropii are important associates of Tetropium spp. in Poland. The opinions about their virulence are controversial. Here, we examined the growth mycelium of the G. piceiperda and O. tetropii in presence of the non-embryogenic cultures of Norway spruce, and accumulation of soluble and unsoluble proteins in this callus. The growth mycelium of one isolate of G. piceiperda was significantly stimulated whilst another isolate of the fungus and both isolates of O. tetropii were unaffected by the presence of the callus. The significant higher (P<0.05) amount of soluble protein, was noted in the callus with both isolates of G. piceiperda. In contrast to G. piceiperda, the callus with O. tetropii had a similar concentration of soluble protein as the control. The importance of these results with respect to the pathogenic abilities and the in vivo behaviour of the examined fungi is discussed.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

66

Opis fizyczny

p.41-47,fig.,ref.

Twórcy

  • Department of Forest Pathology, Agricultural University, Al. 29 Listopada 46,31-425 Krakow, Poland
autor
  • Department of Forest Pathology, Agricultural University, Al. 29 Listopada 46,31-425 Krakow, Poland
autor
  • Department of Forest Pathology, Agricultural University, Al. 29 Listopada 46,31-425 Krakow, Poland

Bibliografia

  • Asiegbu F.O., Kacprzak M., Daniel G., Johansson M., Stenlid J., Mańka, M. 1999. Biochemical interactions of conifer seedling roots with Fusarium sp. Canadian Journal of Microbiology 45: 923–935.
  • Bogdanove A.J. 2002. Protein-protein interactions in pathogen recognition by plants. Plant Molecular Biology 50: 981–989.
  • Bowles D.J. 1990. Defense-related proteins in higher plants. Annual Review of Biochemistry 59: 873–907.
  • Bradford M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
  • Fossdal C.G., Sharma P., Lönneborg A. 2001. Isolation of the first putative peroxidase cDNA from a conifer and the local and systematic accumulation of related proteins upon pathogen infection. Plant Molecular Biology 47: 423–435.
  • Franceschi V.R., Krokene P., Christiansen E., Krekling T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist 167: 353–376.
  • Gupta P.K., Durzan D.J. 1987. Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio-Technology 5: 147–151.
  • Harding S. 1989. The influence of mutualistic blue-stain fungi on bark beetle population dynamics, (Ph.D. thesis, Department of Zoology, Royal Veterinary and Agricultural University, 1989. Copenhagen, Denmark.
  • Hashimoto H., Kura-Hotta M., Katoh, S. 1989. Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seedlings. Plant Cell Physiology 30: 707–715.
  • Hendry S.J., Boddy L., Lonsdale D. 1993. Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytologist 123: 421–428.
  • Hietala A.M., Kvaalen H., Schmidt A., Johnk N., Solheim H., Fossdal C.G. 2004. Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annsoum. Applied and Environmental Microbiology 70: 3948–3953.
  • Hrib J., Rypácek V. 1978. The growth response of wood – destroying fungi to the presence of spruce callus. Mycology 32: 55–60.
  • Hrib J., Rypácek V. 1981. A simple callus test to determine the aggressiveness of wood-destroying fungi. European Journal of Forest Pathology: 11: 270–274.
  • Hrib J., Vookova B., Salajová T., Bolvanský M., Flak P. 1995. Testing of embryogenic and non-embryogenic calli of European black pine (Pinus nigra Arn.) for defence reactions to the fungus Phaeolus schweinitzii. Biologia, Bratislava. 50: 403–410.
  • Jankowiak R., Kolarík M. 2010. Diversity and pathogenicity of ophiostomatoid fungi associated with Tetropium species colonizing Picea abies in Poland. Folia Microbiologica 55: 145–154.
  • Jankowiak R., Rossa R., Bilański, P. 2009. Przyczynek do poznania patogeniczności trzech grzybów siniznowych związanych z Tetropium spp. na świerku pospolitym w Polsce. [A contribution to the knowledge of the pathogenicity of three blue stain fungi associated with Tetropium spp. on Norway spruce in Poland]. Leśne Prace Badawcze 70: 69–75.
  • Kärenlampi S.O., Airaksinen K., Miettinen A.T.E., Kokko H.I., Halopainen J.K., Kärenlampi, L.V., Karjalainen R.O. 1994. Pathogenesis-related proteins in ozone-exposed Norway spruce [Picea abies (Karst) L.]. New Phytologist 126: 81–89.
  • Kirisits T. 1998. Pathogenicity of three blue-stain fungi associated with the bark beetle Ips typographus to Norway spruce in Austria. Österreichische Zeitschrift für Pilzkunde 7: 191–201.
  • Kirisits T. 2004. Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Bark and wood boring insects in living trees in Europe. A Synthesis.
  • Lieutier F., Day K. R., Battisti A., Grégoire J. C., Evans H. (eds.). Kluwer, Dordrecht, pp. 185–223.
  • Kolarík M., Kubátová A., Hulcr J., Pažoutová S. 2008. Fungi are highly diverse and consistent bark beetle associates: evidence from their community Structure in temperate Europe. Microbial Ecology 55: 65–80.
  • Krokene P., Solheim H. 1998. Assessing the virulence of four bark beetle-associated blue stain fungi using Norway spruce seedlings. Plant Pathology 47: 537–540.
  • Krokene P., Solheim H. 2001. Loss of pathogenicity in the blue-stain fungus Ceratocystis polonica. Plant Pathology 50: 497–502.
  • Kvaalen H., Christiansen E., Johnsen Ø., Solheim H. 2001. Is there a negative genetic correlation between initiation of embryogenic tissue and fungus susceptibility in Norway spruce? Canadian Journal of Forest Research 31: 824–831.
  • Kvaalen H., Solheim H. 2000. Co-inokulation of Ceratocystis polonica and Heterobasidion annosum with callus of two Norway spruce clones with different in vivo susceptibility. Plant Cell, Tissue and Organ Culture 60: 221–228.
  • Lieutier F., Yart A., Ye H., Sauvard D., Gallois V. 2004. Variations in growth and virulence of Leptographium wingfieldii Morelet, a fungus associated with the bark beetle Tomicus piniperda L. Annals of Forest Science 61: 45–53.
  • Mayne M.B., Subramanian M., Blake T.J., Coleman J.R., Blumwald E. 1994. Changes in protein synthesis during drought conditioning in roots of jack pine seedlings (Pinus banksiana Lamb.). Tree Physiology 14: 509–519.
  • Nagy N.E., Fossdal C.G., Krokene P., Krekling T., Lönneborg A., Solheim H. 2004. Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiology 24: 505–515.
  • Nawrot-Chorabik K., Jankowiak R. 2010. Interakcje pomiędzy kalusem trzech genotypów Abies alba a grzybami o różnym statusie ekologicznym. Interactions among three genotypes of Abies alba callus and fungi with different ecological status. Leśne prace badawcze 71: 381–389.
  • Niemi K., Krajnakova J., Häggman H. 1998. Interaction between embryogenic cultures of Scots pine and ectomycorrhizal fungi. Mycorrhiza 8: 101–107.
  • Ragazzi A., Moricca S., Dellavalle I. 1995. Growth of axenic cultures of Cronartium flaccidium on callus tissue from Pinus nigra var. laricio and Pinus sylvestris. European Journal of Plant Pathology 25: 31–37.
  • Roberts M.R., Salinas J., Collinge D.B. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology 50: 1031–1039.
  • Sallé A., Monclus R., Yart A., Garcia J., Romary P., Lieutier F. 2005. Fungal flora associated with Ips typographus: frequency, virulence, and ability to stimulate the host defence reaction in relation to insect population levels. Canadian Journal of Forest Research 35: 365–373.
  • Sirrenberg A., Salzer P., Hager A. 1995. Induction of mycorrhiza-like structures and defence reaction in dual cultures of spruce callus and ectomycorrhizal fungi. New Phytologist 130: 149–156.
  • Solheim H. 1993. Ecological aspects of fungi associated with the spruce bark beetle Ips typographus in Norway. In: Ceratocystis and Ophiostoma, taxonomy, ecology and pathogenicity. Wingfield M.J.,
  • Seifert K.A., Webber J.F. (eds.). American Phytopathological Society, St Paul, MN, pp. 235–242.
  • Valluri J.V., Treat W.J., Newton R.J., Cobb B.G., Soltes E.J. 1988. Protein synthesis in slash pine callus cultures exposed to water stress. Tree Physiology 4: 181–186.
  • Vookova B., H ib J., Kormutak A., Adamec V. 2006. Defence reactions of developing somatic embryos of Algerian fir (Abies numidica). Forest Pathology 36: 215–224.
  • Woodward S., Pearce B. 1988. Responses of Sitka spruce callus to challenge with wood decay fungi. European Journal of Plant Pathology 18: 217–22.
  • WWWdocument. Natural Resources Canada – Canadian Forest Service. Summary of Brown Spruce Longhorn Beetle Research Projects (BSLB), Retrieved November 24, 2009, from http://cfs.nrcan.gc.ca/index/summarybslb.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1f8ec300-6d9d-457f-a63d-b46bb6bf7a07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.