PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Screening and identifying a cadmium-resistant fungus and characterizing its cadmium adsorption

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main aim of this study was to screen and identify cadmium-resistant fungus and to characterize its cadmium adsorption. A cadmium-resistant strain (CN35) was isolated from cadmium-polluted paddy soil. Based on morphlogical characteristics, internal transcribed spacers region and β-tubulin gene sequence phylogenesis analysis, the strain was preliminarily identified to be Penicillium sp. This strain was resistant to Cd at 45 mM with Cd adsorption rate up to 83.56%, and also resistant to other heavy metals such as Pb, Zn, and Cu. When Cd²⁺ concentration ranged from 2 to 5 mM, the fungal colony changed from yellow/green to red. The colony morphology was also affected by Cd²⁺ concentrations with protuberances forming on the colony surface at 20 mM. The strain CN35 was found to grow well at pH 4 to 8 at between 24ºC and 37ºC, and the optimal growth conditions were established to be at pH 4 and 30ºC. Fermented liquid of the strain is neither disease-causing nor inhibitory to rice seedling emergence, but rather improves rice seedling and root growth and enhances rice detoxification ability under Cd stress. Thus, the Cd-resistant fungus CN35 has the potential to treat Cd-polluted rice paddies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1011-1021,fig.,ref.

Twórcy

autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China
autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China
autor
  • College of Plant Protection, Hunan Agricultural University, Changsha, 410125, Hunan, China
autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China
autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China
autor
  • Collaborative Innovation Center for Field Weeds Control, Loudi, 417000, Hunan, China
autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China
autor
  • Hunan Agricultural Biotechnology Research Center, Changsha, 410125, Hunan,China

Bibliografia

  • 1. Nordberg G.F., Nogawa K., Nordberg M. Cadmium-Handbook on the Toxicology of Metals (Fourth Edition)-Chapter 32. Handbook on the Toxicology of Metals, 667, 2015.
  • 2. Annu Garg A., Urmila. Level of Cd in different types of soil of Rohtak district and its bioremediation. J Environ Chem Eng, 4 (4), 3797, 2016.
  • 3. Hossain Z., Huq F. Studies on the interaction between Cd²⁺ ions and DNA. J Inorg Biochem, 90 (3-4), 85, 2002.
  • 4. Horiguchi H., Teranishi H., Niiya K., Aoshima K., Katoh T., Sakuragawa N., Kasuya M. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch Toxicol, 68 (10), 632, 1994.
  • 5. Sun Y. B., Zhou Q., X., An J., Liu W. T., Liu R. Chelator-Enhanced Phytoextraction of Heavy Metals from Contaminated Soil Irrigated by Industrial Wastewater with the Hyperaccumulator Plant (Sedum alfredii Hance). Geoderma , 150 (1-2), 106, 2009.
  • 6. Julin B., Wolk A., Johansson J.E., Andersson S.O. Andrén O., Åkesson A. Dietary cadmium exposure and prostate cancer incidence: a population-based prospective cohort study. Brit J Cancer, 107 (5), 895, 2012.
  • 7. Engström A., Michaëlsson K., Vahter M., Julin B., Wolk A., Åkesson A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone, 50 (6), 1372, 2012.
  • 8. Akesson A., Julin B., Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res, 68 (15), 6435, 2008.
  • 9. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 57, Occupational exposures of hairdressers and barbers and personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines. Anal Chim Acta, 300 (1), 340, 1995.
  • 10. Deng Z., Zhang R., Shi Y., Hu L., Tan H., Cao L. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut R, 21 (3), 2346, 2014.
  • 11. Atkinson B. W., Bux F., Kasan H.C. Considerations for Application of Biosorption Technology to Remediate Metal Contaminated Industrial Effluents. Water Sa, 24 (2), 129, 1998.
  • 12. Marchand L., Mench M., Jacob D.L., Otte M.L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ Pollut, 158 (12), 3447, 2010.
  • 13. Xu X., Xia L., Zhu W., Zhang Z., Huang Q., Chen W. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium. Front Microbiol, 6, 1422, 2015.
  • 14. Ashida J. Adaptation of Fungi to Metal Toxicants. Encyclopaedia Britannica: 4009, 1959.
  • 15. GADD G., M. Interactions of fungip with toxic metals. Springer US, 25, 1994.
  • 16. Siripornadulsil S., Siripornadulsil W. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotox Environ Safe, 94, 94, 2013.
  • 17. Chakraborty S., Mukherjee A., Khuda-Bukhsh A.R., Das T.K. Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation. Ecotox Environ Safe, 106, 46, 2014.
  • 18. Salinas E., Rezza I., Martinez L., Ms. M.E.D. T., Me. D.O. Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresource Technol, 72 (2), 107, 2000.
  • 19. Zouboulis A.I., Loukidou M.X., Matis K.A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem, 39 (8), 909, 2004.
  • 20. Zeng X.X., Tang J.X., Yin H.Q., Liu X.D., Pei J., Liu H.W. Isolation, identification and cadmium adsorption of a high cadmium-resistant Paecilomyces lilacinus. Afr J Biotechnol, 9 (39), 6525, 2010.
  • 21. Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H., Perrone G., Seifert K.A., Varga J., Yaguchi T., Samson R.A. Identification and nomenclature of the genus Penicillium. Stud Mycol, 78, 343, 2014.
  • 22. Schoch C.L., Seifert K. A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Fungal Barcoding C. Fungal Barcoding Consortium Author, L., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. P Natl Acad Sci Usa, 109 (16), 6241, 2012.
  • 23. Glass N.L., Donaldson G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microb, 61 (4), 1323, 1995.
  • 24. Zeng X.X., Chai L.Y., Tang J.X., Liu X.D., Yang Z.H. Taxonomy characterization and cadmium biosorption of fungus strain. T Nonferr Metal Soc, 23 (9), 2759, 2013.
  • 25. Chakraborty B.N, Sunar Dey P. L., Chakraborty B.N, Sunar. RAPD profile and rDNA sequence analysis of Talaromyces flavus and Trichoderma species. Indian J Biotechnol, 10 (4), 487, 2011.
  • 26. Dugal S., Gangawane M. Metal tolerance and potential of penicillium species for use in mycoremediation. J Chem Pharm res, 4 (5), 2362, 2012.
  • 27. Hemambika B., Johncy M., Kannan V.R. Biosorption of heavy metals by immobilized and dead fungal cells: A comparative assessment. J Ecol Nat Environ, 3, 2011.
  • 28. Nazareth S., Marbaniang T. Effect of heavy metals on cultural and morphological growth characteristics of halotolerant Penicillium morphotypes. J Basic Microb , 48 (5), 363, 2008.
  • 29. Liu A., Huang W. Separation of tolerant cadmium bacterium strain and its accumulation adsorption of Cd²⁺. J Environ Sci-Chinj, 26 (1), 91, 2006.
  • 30. Bago B., Chamberland H., Goulet A., Vierheilig H., Lafontaine J.G., Piché Y. Effect of Nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular-mycorrhizal fungi. Protoplasma, 192 (2), 80, 1996.
  • 31. Babich H., Stotzky G., Ehrlich H.L. Environmental Factors that Influence the Toxicity of Heavy Metal and Gaseous Pollutants to Microorganisms. Crit Rev Microbiol, 8 (8), 99, 2008.
  • 32. Niu H., Xu X.S., Wang J.H., Volesky B. Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng, 42 (6), 785, 1993.
  • 33. Hamayun M., Khan S.A., Iqbal I., Ahmad B., Lee I.J. Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of Crown daisy (Chrysanthemum coronarium). J Microbiol Biotech, 20 (1), 202, 2010.
  • 34. Wakelin S.A., Anstis S.T., Warren R.A., Ryder M.H. The role of pathogen suppression on the growth promotion of wheat by Penicillium radicum. Australas Plant Path, 35 (2), 253, 2006.
  • 35. Malinowski D.P., Belesky D.P. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J Plant Nutr, 22 (4), 835, 1999.
  • 36. Reis V.M., Baldani J.I., Baldani V.L.D., Dobereiner J. Biological dinitrogen fixation in Gramineae and palm trees. Crit Rev Plant Sci , 19 (3), 227, 2000.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1f05ef5e-9d12-4f33-91d8-0cceb1c54817
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.