Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 63 | 1 |
Tytuł artykułu

Elodeid species as nursery beds for the successful seed restoration of Vallisneria spiralis L.

Warianty tytułu
Języki publikacji
Submerged aquatic vegetation (SAV) is often difficult to restore due to their low seedling survival rates. Therefore, we hypothesized that the elodeid macrophytes serve as effective “nursery” areas to promote success for seedlings of other SAV. However, the high density of the elodeid community may inhibit the establishment of other SAV. An experiment was conducted to explore this “nursery effect” as a restoration approach to increase the success of seed restoration. Two elodeid species were pre-planted into mesocosms to create three levels of “nursery beds” i.e., bare, sparse (approx. 100 g m⁻²) and dense (approx. 200 g m⁻²). Seeds of Vallisneria spiralis were then placed into these beds to test the seed germination and growth of V. spiralis seedlings. After three months, seed germination was lower in the bare treatment than in the sparse and dense treatments. The growth of V. spiralis seedlings was greater in the sparse treatment than in the bare and dense treatments. These results revealed that the established elodeid bed had a positive effect on the seed restoration of V. spiralis but that the restoration efficiency was significantly reduced by the high-density cover of the elodeid community.
Opis fizyczny
  • College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
  • College of Biology and the Environment, Joint Center for Sustainable Forestry Studies, Nanjing Forestry University, Nanjing 210037, PR China
  • M.S. Ailstock, D.J. Shafer, A.D. Magoun 2010 — Effects of planting depth, sediment grain size, and nutrients on Ruppia maritima and Potamogeton perfoliatus seeding emergence and growth — Restor. Ecol. 18: 574–583.
  • F. Arthaud, M. Mousset, D. Vallod, J. Robin, A. Wezel, G. Bornette 2012 — Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes — Freshwater Biol. 57: 666–675.
  • E.P.H. Best, A.M. Teeter, K.J. Landwehr, W.F. James, S.K. Nair 2008 — Restoration options for potential persistence of submersed aquatic vegetation: combining ecological, hydrodynamic and sediment transport modelling — Freshwater Biol. 53: 814–826.
  • I. Blindow 1992 — Decline of charophytes during eutrophication: comparison with angiosperms — Freshwater Biol. 28: 9–14.
  • J. Cao, Y. Wang, Z. Zhu 2012 — Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations — Aquat. Biol. 17: 295–303.
  • J.C. Chambers, J.A. MacMahon 1994 — A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems — Annu. Rev. Ecol. Syst. 25: 263–292.
  • J.M. Chase, T.M. Knight 2006 — Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion — Biol. Invasions, 8: 1643–1649.
  • Y. Dai, C. Jia, W. Liang, S. Hu, Z. Wu 2012 — Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage — Ecol. Eng. 40: 113–116.
  • Y. Dai, S. Wu, J. Chang, C. Jia, W. Liang, Z. Wu 2012 — Effects of Ceratophyllum demersum L. restoration on phosphorus balance at water—sediment interface — Ecol. Eng. 44: 128–132.
  • M. Danger, G. Lacroix, C. Oumarou, D. Benest, J. Mériguet 2008 — Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: a mesocosm study — Freshwater Biol. 53: 2089–2100.
  • M. de Winton, J.S. Clayton, P.D. Champion — 2000 Seedling emergence from seed banks of 15 New Zealand lakes with contrasting vegetation histories — Aquat. Bot. 66: 181–194.
  • D.R. Dobberfuhl 2007 — Light limiting thresholds for submerged aquatic vegetation in a blackwater river — Aquat. Bot., 86: 346–352.
  • D. Erhard, E.M. Gross 2006 — Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton — Aquat. Bot. 85: 203–211.
  • P.G. Eriksson, S.E.B. Weisner 1999 — An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems — Limnol. Oceanogr. 44: 1993–1999.
  • E.M. Gross, C. Feldbaum, A. Graf 2003 — Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes — Hydrobiologia, 506–509: 559–565.
  • J.L. Harper 1977 — Population biology of plants — Academic Press, London.
  • J. He, X. Gu, G. Liu 2008 — Aquatic macrophytes in East Lake Taihu and its interaction with water environment — J. Lake Sci. 20: 790–795 (in Chinese, English summary).
  • A. Hengst, J. Melton, L. Murray 2010 — Estuarine restoration of submerged aquatic vegetation: the nursery bed effect — Restor. Ecol. 18: 605–614.
  • S. Hilt, E.M. Gross 2008 — Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? — Basic Appl. Ecol. 9: 422–432.
  • M. Holmer, E.J. Bondgaard 2001 — Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events — Aquat. Bot. 70: 29–38.
  • B. Hong, W. Li 2000 — Ecological studies on Vallisneria L. in China — Journal of Wuhan Botanical Research, 18: 500–508 (in Chinese, English summary).
  • A. Hussner 2012 — Alien aquatic plant species in European countries — Weed Res. 52: 297–306.
  • H.M. Irfanullah, B. Moss 2004 — Factors influencing the return of submerged plants to a clear-water, shallow temperate lake — Aquat. Bot. 80: 177–191.
  • J. Jiang, C. Zhou, S. An, H. Yang, B. Guan, Y. Cai 2008 — Sediment type, population density and their combined effect greatly charge the shorttime growth of two common submerged macrophytes — Ecol. Eng. 34: 79–90.
  • X. Jin, Q. Xu, C. Yan 2006 — Restoration scheme for macrophytes in a hypertrophic water body, Wuli Lake, China — Lakes Reserv. Res. Manag. 11: 21–27.
  • J.I. Jones, C.D. Sayer 2003 — Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? — Ecology, 84: 2155–2167.
  • J.I. Jones, J.O. Young, J.W. Eaton, B. Moss 2002 — The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton — J. Ecol. 90: 12–24.
  • X. Ke, W. Li 2006 — Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes — Hydrobiologia, 559: 357–362.
  • M.W. Kemp, R. Batleson, P. Bergstrom, V. Carter, C. Gallegos, W. Hunley, L. Karrh, E. Koch, J. Landwehr, K. Moore, L. Murray, M. Naylor, N. Rybicki, J. Court Stevenson, D. Wilcox 2004 — Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors — Estuar. Coast. 27: 363–377.
  • J.T.O. Kirk 1994 — Light and photosynthesis in aquatic ecosystem — Cambridge University Press, Cambridge.
  • E.W. Koch 2001 — Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements — Estuaries, 24: 1–17.
  • M.S. Koch, I.A. Mendelssohn, K.L. McKee 1990 — Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes — Limnol. Oceanogr. 35: 399–408.
  • K. Li, Z. Liu, B. Gu 2008 — Persistence of clear water in a nutrient-impacted region of Lake Taihu: The role of periphyton grazing by snails — Fund. Appl. Limnol. 173: 15–20.
  • K. Li, Z. Liu, B. Gu 2009 — Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis — Ecol. Complex. 6: 438–442.
  • J. Lu, H. Wang, M. Pan, J. Xia, W. Xing, G. Liu 2012 — Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China — Ecol. Eng. 39: 95–103.
  • S.R. Marion, R.J. Orth 2010a — Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds — Restor. Ecol. 18: 514–526.
  • S.R. Marion, R.J. Orth 2010b — Factors influencing seedling establishment rates in Zostera marina and their implications for seagrass restoration — Restor. Ecol. 18: 549–559.
  • J.H. Melton 2002 — Environmental quality and restoration of mesohaline submerged aquatic vegetation — University of Maryland, College Park
  • H.A. Neckles, R.L. Wetzel, R.J. Orth 1993 — Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina L.) dynamics — Oecologia, 93: 285–295.
  • R. Orth, M. Williams, S. Marion, D. Wilcox, T.B. Carruthers, K. Moore, W.M. Kemp, W. Dennison, N. Rybicki, P. Bergstrom, R. Batiuk 2010 — Long-Term Trends in Submersed Aquatic Vegetation (SAV) in Chesapeake Bay, USA, Related to Water Quality — Estuar. Coast. 33: 1144–1163.
  • R.J. Orth, M.C. Harwell, E.M. Bailey, A. Bartholomew, J.T. Jawad, A.V. Lombana, K.A. Moore, J.M. Rhode, H.E. Woods 2000 — A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration — Mar. Ecol. Prog. Ser. 200: 277–288.
  • R.J. Orth, L. Mark, K.A. Moore 1994 — Seed dispersal in a marine macrophyte: implications for colonization and restoration — Ecology, 75: 1927–1939.
  • R.J. Orth, K.A. Moore 1983 — Seed germination and seedling growth of Zostera marina L. (eelgrass) in the Chesapeake bay — Aquat. Bot. 15: 117–131.
  • D. Qiu, Z. Wu, B. Liu, J. Deng, G. Fu, F. He 2001 — The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China — Ecol. Eng., 18: 147–156.
  • G. M. Ruiz, P. Fofonoff, A.H. Hines, E.D. Grosholz 1999 — Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions — Limnol. Oceanogr. 44: 950–972.
  • J. Salgado, C. Sayer, L. Carvalho, T. Davidson, I. Gunn 2010 — Assessing aquatic macrophyte community change through the integration of palaeolimnological and historical data at Loch Leven, Scotland — J. Paleolimnol. 43: 191–204.
  • K. Sand-Jensen, N.L. Pedersen, I. Thorsgaard, B. Moeslund, J. Borum, K.P. Brodersen 2008 — 100 years of vegetation decline and recovery in Lake Fure, Denmark — J. Ecol. 96: 260–271.
  • L. Santamaría 2002 — Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment — Acta Oecol. 23: 137–154.
  • M. Scheffer, S.H. Hosper, M.L. Meijer, B. Moss, E. Jeppesen 1993 — Alternative equilibria in shallow lakes — Trends Ecol. Evol. 8: 275–279.
  • M. Scheffer, E. H. van Nes 2007 — Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size — Hydrobiologia, 584: 455–466.
  • J. Schutten, J. Dainty, A.J. Davy 2005 — Root anchorage and its significance for submerged plants in shallow lakes — J. Ecol. 93: 556–571.
  • C.S. Smith, J.W. Barko 1990 — Ecology of Eurasian watermilfoil — J. Aquat. Plant Manage. 28: 55–64.
  • V.H. Smith 2003 — Eutrophication of freshwater and coastal marine ecosystems a global problem — Environ. Sci. Pollut. Res. 10: 126–139.
  • J.C. Smoot, D.E. Langworthy, M. Levy, R.H. Findlay 1998 — Periphyton growth on submerged artificial substrate as a predictor of phytoplankton response to nutrient enrichment — J. Microbiol. Meth. 32: 11–19.
  • J.E. Titus, D.T. Hoover 1991 — Toward predicting reproductive success in submersed freshwater angiosperms — Aquat. Bot. 41: 111–136.
  • T. van den Broek, R. van Diggelen, R. Bobbink 2005 — Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics — J. Veg. Sci. 16: 579–586.
  • G.F. Veen, J.M. Sarneel, L. Ravensbergen, N. Huig, J. van Paassen, W. Rip, E.S. Bakker 2013 — Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient — Freshwater Biol. 58: 1794–1803.
  • J.W. Wang, D. Yu, W. Xiong, Y.Q. Han 2008 — Above-and belowground competition between two submersed macrophytes — Hydrobiologia, 607: 113–122.
  • J. Wu, S. Cheng, W. Liang, F. He, Z. Wu 2009 — Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus — Hydrobiologia, 628: 111–119.
  • K. Xiao, D. Yu, J. Wang 2006 — Habitat selection in spatially heterogeneous environments: a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis — Freshwater Biol. 51: 1552–1559.
  • K. Xiao, D. Yu, L. Wang, Y. Han 2011 — Physiological integration helps a clonal macrophyte spread into competitive environments and coexist with other species — Aquat. Bot. 95: 249–253.
  • Y. Xie, B. Ren, F. Li 2009 — Increased nutrient supply facilitates acclimation to high-water level in the marsh plant Deyeuxia angustifolia: The response of root morphology — Aquat. Bot. 91: 1–5.
  • C. Ye, C.-H. Li, H. Yu, X. Song, G. Zou, J. Liu 2011 — Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake — Ecol. Eng. 37: 1434–1437.
  • C. Ye, Q. Xu, H. Kong, Z. Shen, C. Yan 2007 — Eutrophication conditions and ecological status in typical bays of Lake Taihu in China — Environ. Monit. Assess, 135: 217–225.
  • C. Ye, H. Yu, H. Kong, X. Song, G. Zou, Q. Xu, J. Liu 2009 — Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu, China — Ecol. Eng. 35: 1656–1663.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.