Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 3 |
Tytuł artykułu

Hindlimb suspension - induced cell apoptosis in the posterior parietal cortex and lateral geniculate nucleus: corresponding changes in c - Fos protein and the PI3K/Akt signaling pathway

Warianty tytułu
Języki publikacji
Recent physiological studies indicate that weightlessness reliably alters ocular structure and function, as well as the ability to process visual‑spatial information. The posterior parietal cortex (PPC) and lateral geniculate nucleus (LGN) are two key brain areas implicated in the processing of visual‑spatial information. Here, we used the modified tail‑suspension rat model to simulate the physiological effects of microgravity. Rats were divided into four groups, which exposed to the simulated microgravity environment for 0 (Control group), 7, 14, or 28 days. We found a significant increase in cellular apoptosis in the PPC and the LGN after 7 days of simulated microgravity. In addition, there was an increase in expression of c‑Fos protein in the PPC, and a repression of the PI3K/Akt signaling pathway in the LGN after 7 days. Based on these results, we conclude that short‑term simulated microgravity may induce cell apoptosis in the PPC and LGN, and reflect a neural adaptive process to accommodate a microgravity environment
Słowa kluczowe
Opis fizyczny
  • Department of Military Medical Psychology, Fourth Military Medical University, Xian, Shaanxi Provence, China
  • Department of Military Medical Psychology, Fourth Military Medical University, Xian, Shaanxi Provence, China
  • Department of Military Medical Psychology, Fourth Military Medical University, Xian, Shaanxi Provence, China
  • Al‑Khawaja I, Haboubi NH (2001) Neurovisual rehabilitation in Balint’s syn‑ drome. J Neurol Neurosurg Psychiatry 70: 416.
  • Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, Algood HS, de Sablet T, Gobert AP, Wilson KT (2010) Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator pro‑ tein-1 complex that causes apoptosis in macrophages. J Biol Chem 285: 20343–20357.
  • Brotelle T, Bay JO (2015) PI3K‑AKT‑mTOR pathway: Description, therapeutic development, resistance, predictive/prognostic biomarkers and thera‑ peutic applications for cancer. B Cancer 103: 18–29.
  • Calton JL, Taube JS (2009) Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial informa‑ tion and route planning. Neurobiol Learn Mem 91: 186–196.
  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16: 205–212.
  • Demertzi A, Van Ombergen A, Tomilovskaya E, Jeurissen B, Pechenkova E, Di Perri C, Litvinova  L, Amico E, Rumshiskaya A, Rukavishnikov I, Sijbers  J, Sinitsyn  V, Kozlovskaya IB, Sunaert S, Parizel PM, Van de Heyning PH, Laureys S, Wuyts FL (2016) Cortical reorganization in an astronaut’s brain after long‑duration spaceflight. Brain Struct Funct 221: 2873–2876.
  • Felix K, Wise K, Manna S, Yamauchi K, Wilson BL, Thomas RL, Kulkarni A, Pellis NR, Ramesh GT (2004) Altered cytokine expression in tissues of mice subjected to simulated microgravity. Mol Cell Biochem 266: 79.
  • Grimm D, Wise P, Lebert M, Richter P, Baatout S (2011) How and why does the proteome respond to microgravity? Expert Rev Proteomics 8: 13–27.
  • Heuer H, Manzey D, Lorenz B, Sangals J (2003) Impairments of manual tracking performance during spaceflight are associated wit specific ef‑ fects of microgravity on visuomotor transformations. Ergonomics 46: 920–934.
  • Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y, Chen L, Chen L (2015) Acti‑ vation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 6: e1775.
  • Kay JN, De LHI, Kim IJ, Zhang Y, Yamagata M, Chu MW, Meister M, Sanes JR (2011) Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 31: 7753–7762.
  • Kolb B, Buhrmann K, Mcdonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4: 664–680.
  • Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain struc‑ tural plasticity with spaceflight. NPJ Microgravity 2: 2. Krasnov IB (1994) Gravitational neuromorphology. Adv Space Biol Med 4: 85-110.
  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12: 217–230.
  • Kulikova EA, Kulikov VA, Sinyakova NA, Kulikov AV, Popova NK (2017) The effect of long‑term hindlimb unloading on the expression of risk neu‑ rogenes encoding elements of serotonin‑, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain. Neurosci Lett 640: 88–92.
  • Manzey D, Lorenz TB, Heuers H, Sangals J (2000) Impairments of manu‑ al tracking performance during spaceflight: more converging evidence from a 20‑day space mission. Ergonomics 43: 589–609.
  • Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli‑Greuter  M (2011) Space flight affects motility and cytoskeletal structures in human mono‑ cyte cell line J‑111. Cytoskeleton 68: 125–137.
  • Meloni MA, Galleri G, Pippia P, Cogoli‑Greuter  M (2006) Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 229: 243–249.
  • Morey‑Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92: 1367–1377.
  • Mysoet J, Canu M, Cieniewskibernard C, Bastide B, Dupont E (2014) Hypo‑ activity affects IGF‑1 level and PI3K/AKT signaling pathway in cerebral structures implied in motor control. PloS One 9: e107631.
  • Nadia SZ, Movassaghi S, Mohamadzadeh F, Soleimani AS, Pourheydar B, Mehdizadeh M (2015) Reduction in ischemic brain injury following the administration of pentoxifylline after transient global ischemia/ reperfu‑ sion in a rat model. Med J Islam Repub Iran 29: 193.
  • Naumenko VS, Kulikov AV, Kondaurova EM, Tsybko AS, Kulikova EA, Krasnov IB, et al. (2015) Effect of actual long‑term spaceflight on bdnf, trkb, p75, bax and bcl‑x l, genes expression in mouse brain regions. Neuroscience 284: 730–736.
  • Niell CM (2013) Vision: more than expected in the early visual system. Curr Biol 23: R681‑R684.
  • Pani G, Samari N, Quintens R, de Saint‑Georges L, Meloni M, Baatout S, Van Oostveldt P, Benotmane MA (2013) Morphological and physiolog‑ ical changes in mature in vitro neuronal networks towards exposure to short‑, middle‑ or long‑term simulated microgravity. PloS One 8: e73857.
  • Piechaczyk M, Blanchard JM (1994) c‑fos proto‑oncogene regulation and function. Crit Rev Oncol Hematol 17: 93–131.
  • Piscopo DM, El‑Danaf RN, Huberman AD, Niell CM (2013) Diverse visual features encoded in mouse lateral geniculate nucleus. J  Neurosci 33: 4642–4656.
  • Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L, et al. (1996) Induc‑ tion of apoptosis by c‑fos protein. Mol Cell Biol 16: 211–218.
  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Pro‑ grammed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695–700.
  • Rivlin‑Etzion  M, Zhou K, Wei  W, Elstrott J, Nguyen PL, Barres BA, Huberman  AD, Feller MB (2011) Transgenic mice reveal unexpected diversity of on‑off direction‑selective retinal ganglion cell subtypes and brain structures involved in motion processing. J  Neurosci 31: 8760–8769.
  • Sarkar S, Wise KC, Manna SK, Ramesh  V, Yamauchi K, Thomas RL, Wilson BL, Kulkarni AD, Pellis NR, Ramesh GT (2006) Activation of activa‑ tor protein‑1 in mouse brain regions exposed to simulated microgravity. In Vitro Cell Dev Biol Anim 42: 96–99.
  • Su CJ, Bao JX, Zhang LF, Rao ZR (2000) Fos protein expression in the me‑ dulla oblongata and changes in size of spinal lateral horn neurons after 4‑wk simulated weightlessness in rats. J Grav Physiol 7: 71–78.
  • Sun X, Xu Z, Zhang S, Cao X, Liu T (2009) Simulated weightlessness aggra‑ vates hypergravity‑induced impairment of learning and memory and neuronal apoptosis in rats. Behav Brain Res 199: 197–202.
  • Taylor CR, Hanna  M, Behnke BJ, Stabley JN, McCullough DJ, Davis RR, Ghosh  P, Papadopoulos A, Muller‑Delp JM, Delp MD (2013) Space‑ flight‑induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 27: 2282–2292.
  • Tees RC (1999) The effects of posterior parietal and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav Brain Res 106: 55–73.
  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of dis‑ ease. Science: 267: 1456–1462.
  • Uva BM, Masini MA, Sturla  M, Bruzzone F, Giuliani  M, Tagliafierro G, Strollo  F (2002) Microgravity‑induced apoptosis in cultured glial cells. Eur J Histochem 46: 209–214.
  • Vara JÁF, Casado E, de Castro J, Cejas P, Belda‑Iniesta C, González‑Barón M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204.
  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779.
  • Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM (2002) Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/ Akt/GSK-3 pathway in human colon cancer cells. J  Biol Chem 277: 36602–36610.
  • Wu X, Li D, Liu J, Diao L, Ling S, Li Y, Gao J, Fan Q, Sun W, Li Q, Zhao D, Zhong G, Cao D, Liu M, Wang J, Zhao S, Liu Y, Bai G, Shi H, Xu Z, Wang J, Xue C, Jin X, Yuan X, Li H, Liu C, Sun H, Li J, Li Y, Li Y (2017) Dammarane sapogenins ameliorates neurocognitive functional impairment induced by simulated long-duration spaceflight. Front Pharmacol 8: 315.
  • Zhang R, Ran HH, Cai LL, Zhu L, Sun JF, Peng L, Liu XJ, Zhang LN, Fang Z, Fan YY, Cui G (2014) Simulated microgravity‑induced mitochondrial dys‑ function in rat cerebral arteries. FASEB J 28: 2715–2724.
  • Zhang X, Zhang L, Yang H, Huang X, Otu H, Libermann TA, DeWolf WC, Khosravi‑Far R, Olumi AF (2007) c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res 67: 9425–9434.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.