PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 01 |

Tytuł artykułu

Morphogenetic response of shoot tips to cryopreservation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthemum x grandiflorum /Ramat./Kitam

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cryopreservation is widely applied to many economically important species excluding chimera plants which are problematic for long-term conservation. Their storage problems can be circumvented only by cryopreserving meristems. This study looked at the morphogenetic response of shoot tips of periclinal chimera chrysanthemum ‘Lady Orange’ and ‘Lady Salmon’, as well as the solid mutant ‘Richmond’, that were cryopreserved by encapsulation-dehydration technique. By applying 10 µM ABA in the preculture medium followed by 4-day-long dehydration treatment, the explant survival reached up to 67%. Besides the stimulation of typical single shoot recovery, cryopreservation led to direct or indirect multiple shoot formation, shoot malformation, as well as inhibited their spontaneous rooting. Microscopic analysis revealed three types of structural damages of shoot tips which can correspond with their morphogenetic response in recovery culture. No influence of cryostorage on the acclimatisation efficiency of the recovered chrysanthemums was observed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

40

Numer

01

Opis fizyczny

Article 18 [13p.], fig.,ref.

Twórcy

autor
  • Faculty of Agriculture and Biotechnology, University of Science and Technology, Poland, Bernardynska 6, 85‑029 Bydgoszcz, Poland
  • Laboratory of Ecotoxicology, Faculty of Biology, Institute of Botany, University of Warsaw, Miecznikowa 1, 02‑096 Warsaw, Poland
autor
  • Centre for Biological Diversity Conservation in Powsin, Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02‑973 Warsaw, Poland

Bibliografia

  • Agbidinoukoun A, Ahanhanzo C, Adoukonou-Sagbadja H, Adjassa M, Djikpo-Tchibozo MA, Agbangla C (2013) Impact of osmotic dehydration on the encapsulated apices survival of two yams (Dioscorea spp.) genotypes from Benin. J App Biosci 65:4999–5007. https://doi.org/10.4314/jab.v65i0.89642
  • Ai PF, Lu LP, Song JJ (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tiss Org Cult 108:381–387. https://doi.org/10.1007/s11240-011-0049-x
  • Bush SR, Earle ED, Langhans RW (1976) Plantlets from petal segments, petal epidermis and shoot tips of the periclinal chimera Chrysanthemum morifolium ‘Indianapolis’. Am J Bot 63:729–737
  • Coste A, Vălimăreanu S, Halmagyi A (2014) Cryopreservation and acclimatization of Lycopersicon esculentum (Mill.) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(2):466–471. https://doi.org/10.15835/nbha.42.2.9579
  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16. https://doi.org/10.1007/s11627-010-9327-2
  • Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tiss Org Cult 112(3):369–378. https://doi.org/10.1007/s11240-012-0245-3
  • Fukai S, Oe M (1990) Morphological observations of chrysanthemum shoot tips cultured after cryoprotection and freezing. J Jpn Soc Hortic Sci 59(2):383–387. https://doi.org/10.2503/jjshs.59.383
  • Fukai S, Goi M, Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitam.) is affected by cryopreservation. Sci Hortic 57:347–351. https://doi.org/10.1016/0304-4238(94)90117-1
  • Gallard A, Panis B, Dorion N, Swennen R, Grapin A (2008) Cryopreservation of Pelargonium apices by droplet-vitrification. CryoLett. 29(3):243–251
  • Halmagyi A, Pinker I (2006) Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet vitrification method. Plant Cell Tiss Org Cult 84:145–153. https://doi.org/10.1007/s11240-005-9012-z
  • Halmagyi A, Fischer-Kluver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22:371–375. https://doi.org/10.1007/s00299-003-0703-9
  • Halmagyi A, Coste A, Tripon S, Crăciun C (2017) Low temperature induced ultrastructural alterations in tomato (Lycopersicon esculentum Mill.) shoot apex cells. Sci Hortic 222:22–31. https://doi.org/10.1016/j.scienta.2017.04.019
  • Hao YJ, You CX, Deng XX (2002) Effects of cryopreservation on developmental competency, cytological and molecular stability of citrus callus. CryoLett. 23(1):27–35
  • Helliot B, Swennen R, Poumay Y, Frison E, Lepoivre P, Panis B (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690–698
  • Hunter EE (1993) Practical electron microscopy—a beginner’s Illustrated Guide, 2nd edn. Cambridge University Press, Cambridge, pp 372–373. https://doi.org/10.1093/ajcp/103.3.372a
  • Joung HY, Cantor M, Kamo K (2007) Cryopreservation of Gladiolus cultivars. Acta Hortic 760:225–231. https://doi.org/10.17660/ActaHortic.2007.760.29
  • Karimi MZ, Amin MN, Azad MAK, Begum F, Islam MM, Alam R (2002) Effect of different plant growth regulators on in vitro shoot multiplication of Chrysanthemum morifolium. OnLine J Biol Sc 3(6):553–560. https://doi.org/10.3923/jbs.2003.553.560
  • Kartha KK (1985) Meristem culture and germplasm preservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 116–134. https://doi.org/10.1002/0471250570.spi055
  • Kereša S, Mihovilović A, Barić M, Židovec V, Skelin M (2012) The micropropagation of chrysanthemums via axillary shoot proliferation and highly efficient plant regeneration by somatic embryogenesis. Afr J Biotechnol 11(22):6027–6033. https://doi.org/10.5897/AJB10.1976
  • Kulus D (2015) Application of cryopreservation for chrysanthemum genetic resources conservation. Acta Hortic 1087:225–232. https://doi.org/10.17660/ActaHortic.2015.1087.27
  • Kulus D, Zalewska M (2014a) Cryopreservation as a tool used in long-term storage of ornamental species—a review. Sci Hortic 168:88–107. https://doi.org/10.1016/j.scienta.2014.01.014
  • Kulus D, Zalewska M (2014b) In vitro plant recovery from alginate encapsulated Chrysanthemum × grandiflorum/Ramat./Kitam. shoot tips. Prop Ornam Plants 14(1):3–12
  • Kushnarenko S, Kovalchuk I, Mukhitdinova Z, Rakhimova E, Reed BM (2010) Ultrastructure study of apple meristem cells during cryopreservation. Asian Australas J Plant Sci Biotechnol 4(1):10–20
  • Liu YX, Liu ZC, Lin T, Li TF, Cheng FD, Lee I, Luo LJ (2009) Study on cryopreservation of shoot-tips of chrysanthemum through vitrification. J Plant Genet Resour 10(2):249–254
  • Martín C, Cervera MT, González-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum × morifolium Ramat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166. https://doi.org/10.1016/j.jplph.2010.06.025
  • Miao N-H, Kaneko Y, Sugawara Y (2005) Ultrastructural implications of pretreatment for successful cryopreservation of Oncidium protocorm-like body. CryoLett 26(5):333–340
  • Mikuła A, Tykarska T, Kuraś M (2005) Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. CryoLett 26(6):367–378
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Poobathy R, Sinniah UR, Rathinam X, Subramaniam S (2013) Histology and scanning electron microscopy observations of cryopreserved protocorm-like bodies of Dendrobium sonia-28. Turk J Biol 37:1206–1222. https://doi.org/10.3906/biy-1206-22
  • Quain MD, Berjak P, Acheampong E, Kioko JI (2009) Sucrose treatment and explant water content: critical factors to consider in development of successful cryopreservation protocols for shoot tip explants of the tropical species Dioscorea rotundata (YAM). CryoLett 30(3):212–223
  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208
  • Sekizawa K, Yamamoto S, Rafique T, Fukui K, Niino T (2011) Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotech 28:401–405. https://doi.org/10.5511/plantbiotechnology.11.0531a
  • Skyba M, Petijová L, Košuth J, Koleva DP, Ganeva TG, Kapchina-Toteva VM, Cellárová E (2012) Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J Plant Physiol 169(10):955–964. https://doi.org/10.1016/j.jplph.2012.02.017
  • Steinmacher AD, Saldanha CW, Clement CR, Guerra MP (2007) Cryopreservation of peach palm zygotic embryos. CryoLett 28(1):13–22
  • Stewart RN, Meyer FG, Dermen H (1972) Camellia + ‘Daisy Eagleso’ a graft chimera of Camellia sasanqua and C. japonica. Am J Bot 59(5):515–524
  • Stoyanova-Koleva D, Stefanova M, Čellárová E, Kapchina-Toteva V (2013) Chloroplast ultrastructure of Hypericum perforatum plants regenerated in vitro after cryopreservation. Biol Plant 57(4):793–796. https://doi.org/10.1007/s10535-013-0357-6
  • Stoyanova-Koleva D, Stefanova M, Ganeva TS, Čellárová E (2015) Structural modifications in the mesophyll associated with cryopreservation of seven Hypericum species. Biol Plant 59(3):514–520. https://doi.org/10.1007/s10535-015-0528-8
  • Szymkowiak EJ, Sussex IM (1996) What chimeras can tell us about plant development. Annu Rev Plant Physiol Mol Biol 47:351–376. https://doi.org/10.1146/annurev.arplant.47.1.351
  • Teixeira da Silva JA, Kulus D (2013) Chrysanthemum biotechnology: discoveries from recent literature. Folia Hortic 25(2):133–140. https://doi.org/10.2478/fhort-2014-0007
  • Wang R-R, Gao X-X, Chen L, Huo L-Q, Li M-F, Wang Q-C (2014) Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Sci Hortic 176:330–339. https://doi.org/10.1016/j.scienta.2014.07.031
  • Wesley-Smith J, Berjak P, Pammenter NW, Walters C (2014) Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Ann Bot 113(4):695–709. https://doi.org/10.1093/aob/mct284
  • Wilkinson T, Wetten A, Prychid C, Fay MF (2003) Suitability of cryopreservation for the long-term storage of rare and endangered plant species: a case history of Cosmos atrosanguineus. Ann Bot 91:65–74. https://doi.org/10.1093/aob/mcg009
  • Xu X-B, Cai Z-G, Gu Q-G, Zhang Q-M (2006) Cell ultrastructure of kiwifruit (Actinidia chinensis) shoot tips during cryopreservation. Agric Sci China 5(8):587–590. https://doi.org/10.1016/S1671-2927(06)60096-5
  • Yamaguchi H, Shimizu A, Hase Y, Degi K, Tanaka A, Morishita T (2009) Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants. Euphytica 165:97–103. https://doi.org/10.1007/s10681-008-9767-5
  • Yin Z-F, Bi W-L, Chen L, Zhao B, Volk GM (2014) An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification. Acta Physiol Plant 36:1683–1692. https://doi.org/10.1007/s11738-014-1543-7
  • Zalewska M, Lema-Rumińska J, Miler N (2007) In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Sci Hortic 113:70–73. https://doi.org/10.1016/j.scienta.2007.01.019
  • Zonneveld BJM (2007) Nuclear DNA content of ploidy chimeras of Hosta Tratt. (Hostaceae) demonstrate three apical layers in all organs, but not in the adventitious root. Plant Syst Evol 269:29–38. https://doi.org/10.1007/s00606-007-0584-4
  • Zonneveld BJM, Van Iren F (2000) Flow cytometric analysis of DNA content in Hosta reveals ploidy chimeras. Euphytica 111:105–110. https://doi.org/10.1023/A:1003879408413

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1e3d7bef-0893-4744-956a-860abb1c4faf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.