PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 70 |

Tytuł artykułu

Crown and root biomass equations for the small trees of Pinus koraiensis under canopy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Estimation of tree biomass is an essential part of studies on carbon sequestration and cycling in forest ecosystem. Small trees grow in the understory and allometric development is different from that of mature trees. However, less attention has been paidto biomass estimates of small trees, especially in mixedforest where tree competition is intensive. Tree allometric equations at both branch level andat whole tree level were, thus, developed and compared for the small trees of Korean pine (Pinus koraiensis) in a mixedstandin northeastern China. At branch level, the best model for live branch biomass was one which used a combination of branch diameter, branch length, whorl position and relative branch depth. For needle biomass, the best model did not significantly improve the estimate with more variables. At whole tree level, stem diameter at breast height (DBH) was a significant determinant of biomass for different components. Tree height did not significantly improve biomass estimation at all. Tree crown variables provedto be useful for estimating all biomass components except the fine roots. The variable measuring abovegroundcompetition intensity was a significant negative determinant of biomass components except canopy biomass. Comparisons to published equations for the same species growing in Heilongjiang province in northeastern China andin central South Korea, were also presented. Both total aboveground biomass and belowground biomass in our study showed somewhat smaller values for a given diameter than the trees growing in other two places.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Opis fizyczny

p.13-25,fig.,ref.

Twórcy

autor
  • Key Laboratory for Forest Resource & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • Key Laboratory for Forest Resource & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • College of Science, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • Key Laboratory for Forest Resource & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, P. R. China
autor
  • Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK K. v. Gadow, Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany
autor
  • Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany

Bibliografia

  • Basuki T.M., van Laake P.E., Skidmore A.K., Hussin Y.A. 2009. Allometric equations for estimating the above-groundbiomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257: 1684–1694.
  • Blazier M.A., Hennessey T.C., Lynch T.B., Wittwer R.F. 2002. Comparison of branch biomass relationships for North Carolina andOklahoma/Arkansas loblolly pine seedsources growing in southeastern Oklahoma. Forest Ecology and Management 159: 241–248.
  • Bond-Lamberty B., Wang C., Gower S.T. 2002. Abovegroundandbelow-groundbiomass and sapwoodarea allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32: 1441–1450.
  • Brix H. 1981. Effects of thinning andnitrogen fertilization on branch andfoliage production in Douglas-fir. Canadian Journal of Forest Research 11: 502–511.
  • Casper B.B., Jackson R.B. 1997. Plant competition underground. Annual Review of Ecology and Systematics 28: 545–570.
  • Cheng S., Widden P., Messier C. 2005. Light and tree size influence belowgroundd evelopment in yellow birch andsugar maple. Plant and Soil 270: 321–330.
  • Cienciala E., Cerný M., Tatarinov F., Apltauer J., Exnerová Z. 2006. Biomass functions applicable to Scots pine. Trees 20: 483–495.
  • Cole T.G., Ewel J.J. 2006. Allometric equations for four valuable tropical tree species. Forest Ecology and Management 229: 351–360.
  • Crecente-Campo F., Marshall P., LeMay V., Diéguez-Aranda U. 2009. A crown profile model for Pinus radiate D. Don in northwestern Spain. Forest Ecology and Management 257: 2370–2379.
  • Grote R., Reiter I.M. 2004. Competition-dependent modeling of foliage biomass in forest stands. Trees 18: 596–607.
  • Hepp T.E., Brister G.H. 1982. Estimating crown biomass in loblolly pine plantations in the Carolina flatwoods. Forest Science 28: 115–127.
  • Hosoda K., Iehara T. 2010. Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. Journal of Forest Research 15: 299–306.
  • Ishii H., Wilson M.E. 2001. Crown structure of old-growth Douglas-fir in the western Cascade Range, Washington. Canadian Journal of Forest Research 31: 1250–1261.
  • Jagodziński A.M., Kałucka I. 2008. Age-related changes in leaf area index of young Scots pine stands. Dendrobiology 59: 57–65.
  • Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. 2003. National–scale biomass estimators for UnitedStates tree species. Forest Science 49: 12–35.
  • Johansson T. 1999. Biomass production of Norway spruce (Picea abies (L.) Karst.) growing on abandoned farmland. Silva Fennica 33: 261–280.
  • Lee W.K., Gadow K.v., Chung D.J., Lee J.L., Shin M.Y. 2004. DBH growth model for Pinus densiflora and Quercus variabilis mixedforests in central Korea. Ecological Modelling 176: 187–200.
  • Litton C.M., Ryan M.G., Tinker D.B., Knight D.H. 2003. Belowgroundandabovegroundbiomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33: 351–363.
  • Mäkelä A., Vanninen P. 1998. Impacts of size and competition on tree form andd istribution of abovegroundbiomass in Scots pine. Canadian Journal of Forest Research 28: 216–227.
  • McCrady R.L., Jokela E.J. 1996. Growth phenology and crown structure of selectedloblolly pine families plantedat two spacings. Forest Science 42: 46–57.
  • Mowrer H.T., Frayer W.E. 1986. Variance propagation in growth andyieldprojections. Canadian Journal of Forest Research 16: 1196–1200.
  • Niklas K.J. 1995. Size-dependent allometry of tree height, diameter and trunk-taper. Annals of Botany 75: 217–227.
  • Pastor J., Aber J.D., Melillo J.M. 1984. Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management 7: 265–274.
  • Petersen K.S., Ares A., Terry T.A., Harrison R.B. 2008. Vegetation competition effects on abovegroundbiomass and macronutrients, leaf area, and crown structure in 5-year oldDouglas-fir. New Forests 35: 299–311.
  • Quint T.C., Dech J.P. 2010. Allometric models for predicting the aboveground biomass of Canada yew (Taxus canadensis Marsh.) from visual and digital cover estimates. Canadian Journal of Forest Research 40: 2003–2014.
  • R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  • Salis S.M., Assis M.A., Mattos P.P., Pião A.C.S. 2006 Estimating the abovegroundbiomass andwood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations. Forest Ecology and Management 228: 61–68.
  • Sampaio E., Gasson P., Baracat A., Cutler D., Pareyn F., Costa L.K. 2010. Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. Forest Ecology and Management 259: 1135–1140.
  • Son Y., Hwang J.W., Kim Z.S., Lee W.K., Kim J.S. 2001. Allometry andbiomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78: 251–255.
  • Ter-Mikaelian M.T., Korzukhin M.D. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management 97: 1–24.
  • Van Lear D.H., Kapeluck P.R. 1995. Above andbe -low-stump biomass andnutrient content of amature loblolly pine plantation. Canadian Journal of Forest Research 25: 361–367.
  • Vanninen P., Mäkelä A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19: 823–830.
  • Verónica G., Luis P.P., Gerardo R. 2010. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management 259: 1118–1126.
  • Wagner R.G., Ter-Mikaelian M.T. 1999. Comparion of biomass component equations for four species of northern coniferous tree seedlings. Annals of Forest Science 56: 193–199.
  • Wang C.K. 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology andManagement 222: 9–16.
  • Wang J.S., Zhang C.Y., Xia F.C., Zhao X.H., Wu L.H., Gadow K.v. 2011. Biomass structure and allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fennica 45: 211–226.
  • Watt M.S., WhiteheadD., Mason E.G., Richardson B., Kimberley M.O. 2003. The influence of weed competition for light andwater on growth and dry matter partitioning of young Pinus radiata, at a dryland site. Forest Ecology and Management 183: 363–376.
  • Weiner J. 1990. Asymmetric competition in plant populations. Trends in Ecology & Evolution 5: 360–364.
  • Wirth C., Schumacher J., Schulze E.D. 2004. Generic biomass functions for Norway spruce in Central Europea – meta-analysis approach towardpred iction and uncertainty estimation. Tree Physiology 24: 121–139.
  • Xiao C.W., Ceulemans R. 2004. Allometric relationships for below- andabovegroundbiomass of young Scots pines. Forest Ecology and Management 203: 177–186.
  • Zar J.H. 1996. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.
  • Zianis D., Xanthopoulos G., Kalabokidis K., Kazakis G., Ghosn D., Roussou O. 2011. Allometric equations for abovegroundbiomass estimation by size class for Pinus brutia Ten. trees growing in North andSouth Aegean Islands, Greece. European Journal of Forest Research 130: 145–160

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1e222db9-810f-412d-8bc7-f044aaf86729
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.