PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 3 |
Tytuł artykułu

Significance of stigma receptivity in intergeneric cross-pollination of Salix × Populus

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pollen–stigma interaction plays an important role in reproductive process and has been continuously studied in many interspecific and intergeneric crossing experiments. The aim of this study was to investigate stigma receptivity (SR) of willow in order to determine the most suitable period for its pollination with poplar pollen and improve the effectiveness of Salix × Populus crosses. Tissue samples were examined histologically using light, epifluorescent, scanning, and transmission electron microscopy. Willow SR was determined by stigma morphological traits, test of pollen germination rate, Peroxtesmo test of peroxidase and esterase activity on stigma surface as well as papilla ultrastructure at anthesis. We have ascertained that the SR duration in willow is short, lasting from 1 to 2 DA. The poplar pollen germination rate on willow stigmas on 1 DA ranged from 26.3 to 11.2%.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
85
Numer
3
Opis fizyczny
Article 3498 [12p.], fig.,ref.
Twórcy
  • Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
Bibliografia
  • 1. Argus GW. Infrageneric classification of Salix in the New World. Ann Arbor, MI: American Society of Plant Taxonomists; 1997. (Systematic Botany Monographs; vol 52).
  • 2. Skvortsov AK, Zinovjev AG. Willows of Russia and adjacent countries: taxonomical and geographical revision. Joensuu: University of Joensuu; 1999. (Joensuun Yliopisto, Matemaattis-Luonnontieteellisen Tiedekunnan Raporttisarja, Biology; vol 39).
  • 3. Horland E, Florineth F, Hadacek F. Weiden in Österreich und angrenzenden Gebieten. Wien: Eigenverl. des Arbeitsbereiches Ingenieurbiologie und Landschaftsbau; 2002.
  • 4. Białobok S. Wierzby: Salix alba L., Salix fragilis L. Warszawa: Państwowe Wydawnictwo Naukowe; 1990. (Nasze Drzewa Leśne; vol 13).
  • 5. Lindegaard KN, Barker JHA. Breeding willows for biomass. Asp Appl Biol. 1997;49:155–162.
  • 6. Larsson S. Commercial breeding of willow for short rotation coppice. Asp Appl Biol. 1997;49:215–218.
  • 7. Hanley S, Karp A. Genetic strategy for dissecting complex traits in biomass willows (Salix ssp). Tree Physiol. 2014;34(11):1167–1180. http://dx.doi.org/10.1093/treephys/tpt089
  • 8. Rönnberg-Wastljung AC, Gulberg U. Genetics of breeding characters with possible effects on biomass production in Salix viminalis (L.). Theor Appl Genet. 1999;97:531–540. http://dx.doi.org/10.1007/s001220051101
  • 9. Bagniewska-Zadworna A, Zenkteler M, Zenkteler E, Wojciechowicz MK, Barakat A, Carlson JE. A successful application of the embryo rescue technique as a model for studying crosses between Salix viminalis and Populus species. Aust J Bot. 2011;59:382–392. http://dx.doi.org/10.1071/BT09188
  • 10. Zenkteler M, Wojciechowicz MK, Bagniewska-Zadworna A, Zenkteler E, Jeżowski S. Intergeneric crossability studies on obtaining hybrids between Salix viminalis and four Populus species. In vivo and in vitro pollination of pistils and the formation of embryos and plantlets. Trees. 2005;19(6):638–643. http://dx.doi.org/10.1007/s00468-005-0427-2
  • 11. Zenkteler E, Zenkteler M, Pasterska R, Wojciechowicz M. Anatomy of pistil and pollen tube transmitting tract in selected species of Salix. Acta Biol Crac Ser Bot. 2014;56:52.
  • 12. Przyborowski J, Jędryczka M, Ciszewska-Marciniak J, Sulima P, Wojciechowicz KM, Zenkte­ler E. Evaluation of the yield potential and physicochemical properties of the biomass of Salix viminalis × Populus tremula hybrids. Ind Crops Prod. 2012;36:549–554. http://dx.doi.org/10.1016/j.indcrop.2011.11.018
  • 13. Zinkl GM, Zwiebel BI, Grier DG, Preuss D. Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development. 1999;126:5431–5440.
  • 14. Zinkl GM, Preuss D. Dissecting Arabidopsis pollen–stigma interactions reveals novel mechanisms that confer mating specificity. Ann Bot. 2000;85(A suppl):15–21.
  • 15. Hiscock SJ, Allen AN. Diverse cell signalling pathways regulate pollen–stigma interactions: the search for consensus. New Phytol. 2008;179:286–317. http://dx.doi.org/10.1111/j.1469-8137.2008.02457.x
  • 16. Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16:84–97. http://dx.doi.org/10.1105/tpc.015800
  • 17. Sanzol J, Rallo P, Herrero M. Stigmatic receptivity limits the effective pollination period in ‘Agua de Aranjuez’ pear. J Am Soc Hortic Sci. 2003;128:458–462.
  • 18. Wolters-Arts M, van der Weer L, van Aelst AC, van As H, Mariani C. Water-conducting properties of lipids during pollen hydration. Plant Cell Environ. 2002;25:513–519. http://dx.doi.org/10.1046/j.1365-3040.2002.00827.x
  • 19. Shivanna KR. Pollen biology and biotechnology. Enfield, NH: Science Publishers; 2003.
  • 20. Heslop-Harrison J, Shivanna KR. The receptive surface of the angiosperm stigma. Ann Bot. 1977;41:1233–1258.
  • 21. Heslop-Harrison J, Heslop-Harrison Y. Pollen stigma interaction in Leguminoseae. The organization of the stigma in Trifolium pratense L. Ann Bot. 1983;51:571–583.
  • 22. Chapman LA, Goring DR. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot. 2010;61(7):1939–1957. http://dx.doi.org/10.1093/jxb/erq073
  • 23. Dresselhaus T, Frankling-Tong N. Male–female cross-talk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant. 2013;6(4):1018–1036. http://dx.doi.org/10.1093/mp/sst061
  • 24. Souza MM, Pereira TNS, Dias AJB, Ribeiro BR, Viana AP. Structural, histochemical and cytochemical characteristics of the stigma and style in Passiflora edulis f. flavicarpa (Passifloraceae). Brazilian Archives of Biology and Technology. 2006;49(1):93–98. http://dx.doi.org/10.1590/S1516-89132006000100011
  • 25. Cheung AY, Wu HM, Di Stilio V, Glaven R, Chen C, Wong E, et al. Pollen–pistil interactions in Nicotiana tabacum. Ann Bot. 2000;85(A suppl):29–37. http://dx.doi.org/10.1006/anbo.1999.1016
  • 26. Heslop-Harrison Y. Control gates and micro-ecology: the pollen–stigma interaction in perspective. Ann Bot. 2000;85(A suppl):5–13. http://dx.doi.org/10.1006/anbo.1999.1063
  • 27. Galen C, Shykoff JA, Plowright RC. Consequences of stigma receptivity schedules for sexual selection in flowering plants. Am Nat. 1986;127:462–476. http://dx.doi.org/10.1086/284495
  • 28. Ter-Avanesian DV. The effect of varying the number of pollen grains used in fertilization. Theor Appl Genet. 1978;52(2):77–79.
  • 29. Silva LAC, Pagliarini MS, Santos SA, Valle CB. Stigma receptivity, mode of reproduction, and mating system in Mesosetum chaseae Luces (Poaceae), a native grass of the Brazilian Pantanal. Genet Mol Res. 2013;12(4):5038–5045. http://dx.doi.org/10.4238/2013.October.25.2
  • 30. Rajora OP, Zsufa L. Pollen viability of some Populus species as indicated by in vitro pollen germination and tetrazolium chloride staining. Can J Bot. 1986;64:1086–1088. http://dx.doi.org/10.1139/b86-148
  • 31. Brewbaker JL, Kwack BH. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot. 1963;50:859–865. http://dx.doi.org/10.2307/2439772
  • 32. Dafni A, Maués M. A rapid and simple procedure to determine stigma receptivity. Sex Plant Reprod. 1998;11:177–180. http://dx.doi.org/10.1007/s004970050138
  • 33. Mc lnnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Exp Bot. 2006;57(8):1835–1846. http://dx.doi.org/10.1093/jxb/erj182
  • 34. de Las-Heras MA, Hidalgo PJ, Ubera JL. Stigmatic cuticle in Hedysarum glomeratum: structure and function. Int J Dev Biol. 2001;45:41–42.
  • 35. Chen F, Yuan W, Shi XP, Ye YM. Evaluation of pollen viability, stigma receptivity and fertilization success in Lagerstroemia indica L. Afr J Biotechnol. 2013;12(46):6460–6467. http://dx.doi.org/10.5897/AJB11.3594
  • 36. Randall BW, Walton DW, Lee DJ, Wallace HM. Comparison of three pollination methods for Eucalyptus argophloia, a small-flowered eucalypt. Ann For Sci. 2015;72(1):127–133. http://dx.doi.org/10.1007/s13595-014-0407-z
  • 37. Saska MM, Kuzovkina YA. Phenological stages of willow (Salix). Ann Appl Biol. 2010;156:431–437. http://dx.doi.org/10.1111/j.1744-7348.2010.00400.x
  • 38. Harder LD. Prusinkiewicz P. The interplay between inflorescence development and function as the crucible of architectural diversity. Ann Bot. 2012;109(4):761–772. http://dx.doi.org/10.1093/aob/mcs252
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1e018422-f73b-4e3d-abc9-d1acb95b7115
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.