Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 68 | 07 |
Tytuł artykułu

Metylowanie DNA u pszczoły miodnej (Apis mellifera) i jego wpływ na badania biologiczne

Treść / Zawartość
Warianty tytułu
DNA methylation in the honey bee (Apis mellifera) and its importance for biological research
Języki publikacji
The honey bee is the fourth insect following the drosophila, the silkworm and the anopheles - whose genome has been fully investigated. Eighty percent of the methylation-prone apian genes are located in the brain. Only about 70 thousand out of the 60 million cytosines contained in the bee genome are methylated. Most of them have their primary methylation sites in the exons. In contrast to the intensive human genome methylation, only small and specific segments of the honey bee genome are methylated. It is estimated that approximately 35-40% of apian genes are deficient in CpG groups. DNA methylation increases the incidence of mutations at the CpG sites and may promptly lead to inconsistency between DNA sequences. Methylation in A. mellifera occurs exclusively in CpG dinucleotides characterized by a bimodal configuration and deamination of methylated CpGs to TpGs (CpA in the supplementary strand), resulting in GC mutating into AT. Genes with a low and high CpG content (low-CpG and high-CpG) are active in various biological processes. The low-CpG genes are typical of hypermethylation and particularly important for metabolism, ubiquitination, gene expression and translation. The high-CpG genes, in turn, primarily participate in hypomethylation and are fundamental for development processes, intercellular communication and adhesion. The sparing methylation system (of bees) offers unique possibilities for the study of methylation using a model organism that is much simpler than most laboratory plants and animals, let alone man. The specific epigenetic mechanisms active in the small apian genome make bees potential model objects for epigenetic analyses and experiments aiming at providing solutions to such human health problems as neoplastic, genetic, metabolic, vascular, neurological and immunological diseases.
Opis fizyczny
  • Katedra Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 13, 20-950 Lublin
  • 1.Barchuk A., Cristino A., Kucharski R., Costa L., Simoes Z., Maleszka R.: Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev. Biol. 2007, 7, 70-89.
  • 2.Barron A., Maleszka J., Meer R., Robinson G., Maleszka R.: Comparing injection, feeding and topical application methods for treatment of honeybee with octopamine. J. Insect Physiol. 2007, 53, 187-194.
  • 3.Barron A., Maleszka R., Meer R., Robinson G.: Octopamine modulates honey bee dance behavior. Neuroscience 2007, 104, 1703-1707.
  • 4.Beye M., Gattermaier I., Hasselmann M., Gempe T., Schioett M., Baines J., Schilipalius D., Mougel F., Emore Ch., Rueppell O., Srivio A., Guzman-Navoa E., Gunt G., Solignac M., Page R.: Exceptionally high levels of recombination cross in the honey bee genome. Genome Res. 2006, 16, 1339-1344.
  • 5.Beye M., Hunt G. J., Page R. E., Fondrk M., Grohmann L., Moritz R.: Unusually high recombination rate detected in the sex locus region of the honeybee (Apis mellifera). Genetics 1999, 153, 1701-1708.
  • 6.Borsuk G.: Przegląd wybranych zagadnień z badań etologicznych w pszczelarstwie. Kosmos 2011, 60, 401-413.
  • 7.Burzyński S. R.: Geny życia. Wyd. Farmapress, Warszawa 2008, 16-77.
  • 8.Burzyński S. R.: Practical application of gene silencing theory of aging: life extension in animal testing and human clinical trails. Anti-Ageing Med. Therap. 2009, 11, 1-8.
  • 9.Cayre M., Buckingham S., Yagodin S., Sattelle D.: Cultured insect mushroom body neurons express functional receptors for acetylocholine, GABA, glutamate, octopamine, and dopamine. J. Neurophysiol. 1999, 81, 1-14.
  • 10.De la Rua P., Jaffe R., Dall Olio R., Munoz I., Serrano J.: Biodiversity, conservation and current threats to European honeybees. Apidologie 2009, 40, 263-284.
  • 11.Dyer A. G., Neumeyer C., Chittka L.: Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J. Exp. Biol. 2005, 208, 4709-4714.
  • 12.Elango N., Hunt B. G., Goodisman M., Yi S.: DNA methylation in widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. PNAS Early Edition 2009, doi/10.1073/pnas.0900301106.
  • 13.Foret S., Kucharski R., Pittelkow Y., Lockett G., Maleszka R.: Epigenetic regulation of the honey bee transcriptome: unraveling the nature of methylated genes. BMC Genomics 2009, 472, 1-11.
  • 14.Giurfa M.: The amazing mini-brain: lessons from a honey bee. Bee World 2003, 84, 5-18.
  • 15.Hunt B., Brisson J., Yi S., Goodisman M.: Functional conservation of DNA methylation in the Pea Aphid and the Honeybee. Genome Biol. Evol. 2010, 2, 719-728.
  • 16.Ikeda T., Furukawa S., Nakamura J., Sasaki M., Sasaki T.: CpG methylation in the hexamerin 110 gene in the European honeybee, Apis mellifera. J. Insect Sci. 2011, 74, 1-11.
  • 17.Jones J., Helliwell P., Beekman M., Maleszka R., Oldroyd B.: The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. J. Comp. Physiol. A 2005, 191, 1121-1129.
  • 18.Kamakura M.: Royalactin induces queen differentiation in honeybees. Nature 2011, 473, 478-483.
  • 19.Kucharski R., Maleszka J., Foret S., Maleszka R.: Nutritional control of reproductive status in honeybees via DNA Methylation. Science 2008, 319, 1827-1830.
  • 20.Kucharski R., Maleszka R.: Molecular profiling of behavioural development: differential expression of mRNAs for inositol 1,4,5-trisphosphate 3-kinase isoforms in naïve and experienced honeybees (Apis mellifera). Mol. Brain Res. 2002, 99, 92-101.
  • 21.Kucharski R., Mitri C., Grau Y., Maleszka R.: Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implication for memory formation. Invert. Neurosci. 2007, 7, 99-108.
  • 22.Lipiński Z.: Istota oraz mechanizm porzucania gniazd przez roje pszczół miodnych. Blenam, Olsztyn 2002.
  • 23.Lockett G., Helliwell P., Maleszka R.: Involvement of DNA methylation in memory processing in the honey bee. Learning Memory 2010, 21, 812-816.
  • 24.Lockett G., Kucharski R., Maleszka R.: DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes, Brain and Behavior 2011, doi:10.1111/j.1601-183X.2011.00751.x.
  • 25.Lockett G., Wilkes F., Maleszka R.: Brain plasticity, memory and neurological disorders: an epigenetic perspective. Neuro Report 2010, 21, 909-913.
  • 26.Lyko F., Foret S., Kucharski R., Wolf S., Falckenhayn C., Maleszka R.: The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PlosBiology 2010, 8, 1-12.
  • 27.Lyko F., Maleszka R.: Insects as innovative models for functional studies of DNA methylation. Trends Genetics 2011, 27, 127-164.
  • 28.Maleszka J., Barron A., Helliwell P., Maleszka R.: Effect of age, behavior and social environment on honey bee brain plasticity. J. Comp. Physiol. A 2009, 195, 733-740.
  • 29.Menzel R., Giurfa M.: Cognitive architecture of a mini-brain: the honeybee. Trends Cogn. Sci. 2001, 5, 62-71.
  • 30.Miklos G., Maleszka R.: Epigenomic communication system in human and honey bee: From molecules to behavior. Hormones and Behavior 2011, 59, 399-406.
  • 31.Pahl M., Zhu W., Pix W., Tautz J., Zhang S.: Circadian timed episodic-like memory - a bee knows what to do when, and also where. J. Exp. Biol. 2007, 210, 3559-3567.
  • 32.Paleolog J.: Pszczoły - ochrona zasobów genetycznych, [w:] Litwińczuk Z.: Ochrona zasobów genetycznych zwierząt gospodarskich i dziko żyjących. PWRiL, Warszawa 2011.
  • 33.Paleolog J., Strachecka A., Burzyñski S., Olszewski K., Borsuk G.: The larval diet supplemented with the low-molecular epigenetic switch sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in Apis mellifera L. J. Apic. Sci. 2011, 55, 73-83.
  • 34.Robertson H., Gordon K.: Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Res. 2006, 16, 1345-1351.
  • 35.Shemesh Y., Cohen M., Bloch G.: Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB J. 2007, 21, 2304-2311.
  • 36.Si A., Helliwell P., Maleszka R.: Effect of NMDA receptors antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 2004, 77, 191-197.
  • 37.Si A., Zhang S., Maleszka R.: Effect of caffeine on olfactory and visual learning in the honey bee (Apis mellifera). Pharmacol. Biochem. Behav. 2005, 82, 664-672.
  • 38.Tautz J.: Fenomen pszczół miodnych. Galaktyka, Łódź 2008.
  • 39.The Honeybee Genome Sequencing Consortium: Insight into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931-949.
  • 40.Wang Y., Jorda M., Maleszka R., Ling X., Robertson H., Mizzen C., Peinado M., Robinson G.: Functional CpG methylation system in a social insect. Science 2006, 314, 645-647.
  • 41.Wang Y., Leung F.: In silico prediction of two classes of honeybee genes with CpG deficiency or CpG enrichment and sorting according to gene ontology classes. J. Mol. Evol. 2009, 68, 700-705.
  • 42.Woyke J.: Diploid drone substance - cannibalism substance. XXI Intern. Apicult. Congr., Univ. Maryland, USA, 1967, a. Abstracts: 57-58, b. Proceedings, Apimondia Publ. House, Bucharest, Romania: 471-4 AA 681/1967.
  • 43.Zeng J., Yi S.: DNA methylation and genome evolution in honeybee: gene length, expression, functional enrichment covary with the evolutionary signature of DNA methylation. Genome Biol. Evol. 2010, 2, 770-780.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.