Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Release law of Sb, As, and Hg in antimony smelting slag under simulated acid rain


Warianty tytułu

Języki publikacji



This study takes the Southern antimony smelting slag depot in Xikuangshan (XKS) Sb mine in the city of Lengshuijiang, Hunan, China, as the research object and explores the release law of Sb, As, and Hg in smelting slag under different pH-value simulated acid rain by a semi-dynamic leaching experiment of simulating the local rain. The results show that the leachate pH value is positively correlated with the pH value of simulated acid rain, while the leachate conductivity is negatively correlated with it. The leaching rates of As and Hg are negatively correlated with the pH value of the simulated acid rain, while the leaching rate of Sb is positively correlated with it; in the leaching process, the leachate pH value goes downward slowly after shooting up, but the leachate conductivity is continuously reduced; the releasing process of Sb, As, and Hg consists of two stages, and their leaching rate forms such an order as Sb > Hg > As. The diffraction peak intensity of the main mineral composition of quartz and calcite decreases significantly after leaching; the smelting slag’s surface becomes less rough than before leaching, with fewer pores and edges, and the contents of S, Si, Al, Fe, Ca, and Sb on the slag surface decrease while the content of O, As, and Hg increases.

Słowa kluczowe








Opis fizyczny



  • College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201
  • College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201
  • College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201
  • College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201


  • 1. KAPUSTA P., SOBCZYK Ł. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci. Total Environ., 536, 517, 2015.
  • 2. ESCARRÉ J., LEFÈBVRE C., RABOYEAU S., DOSSANTOS A., GRUBER W., MAREL J.C.C., FRÉROT H., NORET N., MAHIEU S., COLLIN C., OORT F.V. Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration. Water Air and Soil Poll., 216, 485, 2011.
  • 3. ASENSIO V., VEGA F.A., SINGH B.R., COVELO E.F. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci. Total Environ., 443, 446, 2013.
  • 4. VÍTKOVÁ M., ETTLER V., MIHALJEVIČ M., ŠEBEK O. Effect of sample preparation on contaminant leaching from copper smelting slag. J. Hazard. Mater., 197, 417, 2011.
  • 5. LI H.B., WANG Z.X., YANG Z.H., CHAI L.Y., LIAO Y.P. Static and Dynamic leaching of chromium(VI) from chromium-containing slag. Environ. Eng Sci., 29, 426, 2012.
  • 6. COSTAA G., POLETTINIB A., POMIB R., STRAMAZZOB A. Leaching modelling of slurry-phase carbonated steel slag. J. Hazard. Mater., 302, 415, 2016.
  • 7. POTYSZ A., KIERCZAK J., FUCHS Y., GRYBOS M., GUIBAUD G., LENS P.N.L., HULLEBUSCH E.D.V. Characterization and pH-dependent leaching behaviour of historical and modern copper slags. J. Geochem. Explor., 160, 1, 2016.
  • 8. U.S. Geological Survey, Mineral Commodity Summaries 2013., Washington, 2013.
  • 9. TAO Y., JIN J.F. Paragenesis and differentiation of As, Au with Sb in Xikangshan-type antimony deposits, Central Hunan. Acta mineralogical sincia, 21, 67, 2001 [In Chinese].
  • 10. HE M.C. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Hlth., 29, 209, 2007.
  • 11. WANG X.Q., HE M.C., XIE J., XI J.H., LU X.F. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). J. Soil. Sediment., 10, 827, 2010.
  • 12. OKKENHAUG G., ZHU Y.G., LUO L., LEI M., LI X., MULDER J. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ Pollut., 159, 2427, 2011.
  • 13. ZENG D.F., ZHOU S.J., REN B.Z., CHEN T.S. Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China. J. Anal Methods Chem., Article ID 909724, 9 pages. Volume 2015.
  • 14. WEI C.Y., GE Z.F., CHU W.S., FENG R.W. Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ. Exp. Bot ., 109, 31, 2015.
  • 15. KURODA K., ENDO G., OKAMOTO A., YOO Y., HORIGUCHI S. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutat. Res., 264, 163, 1991.
  • 16. SCHNORR T.M., STEENLAND K., THUN M.J., RINSKY R.A. Mortality in a cohort of antimony smelter workers. Am. J. Ind. Med., 27, 759, 1995.
  • 17. STATES J.C., SRIVASTAVA S., CHEN Y., BARCHOWSKY A. Arsenic and cardiovascular disease. Toxicol. Sci., 107, 312, 2009.
  • 18. PARVEZ F., CHEN Y., BRANDT-RAUF P.W., BERNARD A., DUMONT X., SLAVKOVICH V., ARGOS M., D’ARMIENTO J., FORONJY R., HASAN M.R., EUNUS H.E., GRAZIANO J.H., AHSAN H. Nonmalignant respiratory effects of chronic arsenic exposure from drinking water among never-smokers in Bangladesh, Environ. Health Perspect. 116, 190, 2008.
  • 19. NORDBERG G. Handbook on the Toxicology of Metals, Academic Press, Amsterdam, Boston, 2007.
  • 20. USEPA. Water Related Fate of the 129 Priority Pollutants, Washington D.C., 1979.
  • 21. European Council. Directive 76/464/EEC-Water pollution by discharges of certain dangerous substance. 1976.
  • 22. FLYNN H.C., MEHARG A.A., BOWYER P.K., PATON G.I. Antimony bioavailability in mine soils. Environ Pollut., 124, 93, 2003.
  • 23. CIDU R., BIDDAU R., DORE E., VACCA A., MARINI L. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Sci. Total Environ.,497-498, 331, 2014.
  • 24. WANG X.Q., HE M.C., XI J.H., LU X.F. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchem J., 97, 4, 2011.
  • 25. TIGHE M., LOCKWOOD P., WILSON S. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit., 7, 1177, 2005.
  • 26. LEUZ A.K., MÖNCH H., JOHNSON C.A. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ. Sci. Technol., 40, 7277, 2006.
  • 27. MITSUNOBU S., MURAMATSU C., WATANABE K., SAKATA M. Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications. Environ. Sci. Technol., 47, 9660, 2013.
  • 28. LEE P.K., YU S.Y. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust. Environ Pollut., 210, 65, 2016.
  • 29. TESSIER A., CAMPBELL P.G.C., BISSION M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem., 51, 844, 1979.
  • 30. KOSSON D.S., VAN DER SLOOT H.A., and EIGHMY T.T. An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues. J. Hazard. Mater., 47, 43, 1996.
  • 31. Environmental protection bureau of Loudi city. Bulletin of the environmental situation of Loudi city. 2014 [In Chinese].
  • 32. ZHANG G., ZENG G.M., JIANG Y.M., LIU H.L. Analysis on the variant characteristics, present situation and origin of acid rain in Hunan Province. Res. Environ Sci., 16, 14, 2003 [In Chinese].
  • 33. PAN Y., YANG G. Background value of soils in Hunan and their investigation methods. China Environmental Science Press, 1988 [In Chinese].
  • 34. LIANG B., ZHENG X.Z., JIN J.X., BAI Y.P. Influence of acid and alkali solutions leaching on the water and heavy metal contents of tail ore. Journal of Guangxi University, 37, 539, 2012 [In Chinese].
  • 35. POTYSZ A., KIERCZAK J., Fuchs Y., GRYBOS M., GUIBAUD G., LENS P.N.L., HULLEBUSCH E.D.V. Characterization and pH-dependent leaching behavior of historical and modern copper slags. J. Geochem. Explor., 160, 1, 2016.
  • 36. PAKTUNC A.D. Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ. Geo., 39, 103, 1999.
  • 37. DUTRIZAC J.E. The dissolution of sphalerite in ferric sulfate media. Metall Mater Trans. B., 37, 171 , 2006.
  • 38. SOUZA A.D., PINA P.S., LEÃO V.A., SILVA C.A., SIQEIRA P.F. The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate. Hydrometallurgy, 89, 72, 2007.
  • 39. ASHLEY P.M., CRAW D., GRAHAM B.P., CHAPPELL D.A. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and New Zealand. J. Geochem Exp., 77, 1, 2003.
  • 40. ZHU J., WU F.C. Treatment of wastewater released from antimony ore processing using acidified coal fly ash. Acta Sci. Circumst., 30, 361, 2010 [In Chinese].
  • 41. YU Y., ZHU Y., GAO Z., GAMMONS C.H., LI D. Rate of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45ºC. Environ. Sci. Technol., 41, 6460, 2007.
  • 42. ZHANG G.P., LIU C.Q., WU P., YANG Y.G. Environmental geochemical characteristics of mine wastes from the Wanshan mercury mine, Guizhou, China. Acta Mieralogica Sinica, 24, 231, 2004 [In Chinese].
  • 43. MARX S.K., LAVIN K.S., HAGEMAN K.J., KAMBER B.S., O’LOINGSIGH T., MCTAINSH G.H. Trace elements and metal pollution in aerosols at an alpine site, New Zealand: Sources, concentration and implications. Atmos Environ., 82, 206, 2014.
  • 44. SAIKIA B.K., WARD C.R., OLIVEIRA M.L.S., HOWER J.C., LEAO F.D., JOHNSTON M.N., O’BRYAN A., SHARMA A., BARUAH B.P., SILVA L.F.O. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. Int J. Coal Geol. 137 ,19, 2015.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.