PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 11 |

Tytuł artykułu

Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes during adventitious shoot regeneration of watermelon (Citrullus lanatus)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The WUSCHEL-related homeobox (WOX) gene family is a hotspot for diverse functions in development biology. Recently available whole-genome sequences allowed a more comprehensive analysis of WOX genes in watermelon (Citrullus lanatus). The results of this study provide a genomic framework for further research of watermelon WOX genes and contribute to understanding of the evolutionary mode of WOX genes in Cucurbitaceae crops. The qRT-PCR analysis demonstrated active expression of 11 WOX genes in watermelon tissues, which brings new evidence for WOX genes acting as conserved factors during watermelon development. Moreover, the distinct expression profiles of WOX genes during shoot initiation might lead todifferent shoot regeneration abilities. This work gives an overview of the differentially expressed WOX genes during shoot regeneration inwatermelon. The interrelations of WOX genes, phytohormones and other transcription factors during the process will be the focus of future studies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

11

Opis fizyczny

Article: 224 [12 p.], fig.,ref.

Twórcy

autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
  • Wuhan Institute of Agricultural Science, Wuhu Eco-Agricultural Park, Huangpi District, Wuhan, 430345, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
autor
  • Wuhan Institute of Agricultural Science, Wuhu Eco-Agricultural Park, Huangpi District, Wuhan, 430345, Hubei, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, #1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China

Bibliografia

  • Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636. doi:10.1146/annurevarplant-042811-105555
  • Akasaka-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 24:649–654. doi:10.1007/s00299-005-0010-8
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
  • Arroyo-Herrera A et al (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tiss Org 94:171–180. doi:10.1007/ s11240-008-9401-1
  • Bouchabke-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C (2013) Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686. doi:10.1007/s00299-013-1402-9
  • Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential expression of WOX genes mediates apical–basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876. doi:10.1016/j.devcel.2008.03.008
  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401.doi:10.1016/S1360-1385(03)00164-X
  • Cary AJ, Che P, Howell SH (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32:867–877. doi:10.1046/j.1365-313X.2002.01479.x
  • Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73:798–813. doi:10.1111/Tpj.12085
  • Choi PS, Soh WY, Kim YS, Yoo OJ, Liu JR (1994) Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep 13:344–348. doi:10.1007/BF00232634
  • Collins JK, Wu GY, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, Clevidence BA (2007) Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 23:261–266. doi:10.1016/j.nut.2007.01.005
  • Compton ME (2000) Interaction between explant size and cultivar affects shoot organogenic competence of watermelon cotyledons. HortScience 35:749–750
  • Compton ME, Gray DJ, Gaba VP (2004) Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tiss Org 77:231–243. doi:10.1023/B:Ticu.0000018428. 43446.58
  • Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–2234. doi:10.1242/Dev.091314
  • Gehring WJ et al (1990) The structure of the homeodomain and its functional implications. Trends Genet TIG 6:323–329
  • Grassi S et al (2013) Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics. doi:10.1186/1471-2164-14-781 (Artn 781)
  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026 (in Chinese)
  • Guo SG et al (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics. doi:10.1186/1471-2164-12-454 (Artn 454)
  • Guo SG et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:U51–U82. doi:10.1038/Ng.2470
  • Haecker A,Gross-Hardt R, Geiges B, SarkarA, BreuningerH, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668. doi:10.1242/Dev.00963
  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629. doi:10.1105/tpc.110.076083
  • Huang S et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281. doi:10.1038/ng.475
  • Ikeda M, Mitsuda N, Ohme-Takagi M(2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21:3493–3505. doi:10.1105/tpc.109.069997
  • Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) WOX4 promotes procambial development. Plant Physiol 152:1346–1356. doi:10.1104/pp.109.149641
  • Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441. doi:10.1046/j.1365-313X.2003.01816.x
  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. Plos One 9:e90612. doi:10.1371/journal.pone.0090612
  • Landi L, Mezzetti B (2006) TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep 25:281–288. doi:10.1007/s00299-005-0066-5
  • Leibfried A et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi:10.1038/Nature04270
  • Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet. Doi:10.1371/ journal.pgen.1002243 (ARTN e1002243)
  • Lian G, Ding Z,Wang Q, Zhang D, Xu J (2014) Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. ScientificWorldJournal 2014:534140. doi:10.1155/2014/534140
  • Lie C, Kelsom C, Wu X (2012) WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis. Plant J 72:674–682. doi:10.1111/j.1365-313X.2012.05113.x
  • Lin H, Niu LF, McHale NA, Ohme-Takagi M, Mysore KS, Tadege M (2013a) Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc Natl Acad Sci USA 110:366–371. doi:10.1073/pnas.1215376110
  • Lin H, Niu L, Tadege M (2013b) STENOFOLIA acts as a repressor in regulating leaf blade outgrowth. Plant Signal Behav 8:e24464. doi:10.4161/psb.24464
  • Liu RX, Kuang J, Gong Q, Hou XL (2003) Principal component regression analysis with SPSS. Comput Methods Prog Biomed 71:141–147. doi:10.1016/S0169-2607(02)00058-5
  • Liu JC, Sheng LH, Xu YQ, Li JQ, Yang ZN, Huang H, Xu L (2014a) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26:1081–1093. doi:10.1105/tpc.114.122887
  • Liu BB, Wang L, Zhang J, Li JB, Zheng HQ, Chen J, Lu MZ (2014b) WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics. doi:10.1186/1471-2164-15-296 (Artn 296)
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262
  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815
  • Motte H, Vereecke D, Geelen D, Werbrouck S (2014) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32:107–121. doi:10.1016/j.biotechadv.2013.12.002
  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794. doi:10.1093/molbev/msp201
  • Ouibrahim L et al (2014) Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79:705–716. doi:10.1111/tpj.12586
  • Park SO, Zheng ZG, Oppenheimer DG, Hauser BA (2005) The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development 132:841–849. doi:10.1242/Dev.01654
  • Perkins-Veazie P, Collins JK, Davis AR, Roberts W (2006) Carotenoid content of 50 watermelon cultivars. J Agric Food Chem 54:2593–2597. doi:10.1021/Jf052066p
  • Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tiss Org 112:101–108.doi:10.1007/s11240-012-0210-1
  • Rashid SZ, Yamaji N, Kyo M (2007) Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco. Plant Cell Rep 26:1449–1455. doi:10.1007/s00299-007-0342-7
  • Romera-Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S (2013) The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. Plant J 73:37–49. doi:10.1111/Tpj.12010
  • Sarkar AK et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. doi:10.1038/nature05703
  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644
  • Shimizu R, Ji J, Kelsey E, Ohtsu K, Schnable PS, Scanlon MJ (2009) Tissue specificity and evolution of meristematic WOX3 function. Plant Physiol 149:841–850. doi:10.1104/pp.108.130765
  • Sul IW, Korban SS (2005) Direct shoot organogenesis from needles of three genotypes of Sequoia sempervirens. Plant Cell Tiss Org 80:353–358. doi:10.1007/s11240-004-1365-1
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
  • Tian HY et al (2014) WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol Plant 7:277–289. doi:10.1093/Mp/Sst118
  • Ueda M, Zhang ZJ, Laux T (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development (vol 20, pg 264, 2011). Dev Cell 20:408. doi:10.1016/j.devcel.2011.03.009
  • van der Graaff E, Laux T, Rensing SA (2009) The WUS homeoboxcontaining (WOX) protein family. Genome Biol. doi:10.1186/Gb-2009-10-12-248 (Artn 248)
  • Wang XZ, Shang LM, Luan FS (2013a) A highly efficient regeneration system for watermelon (Citrullus lanatus Thunb.). Pak JBot 45:145–150
  • Wang JH et al (2013b) The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIFPXY/TDR-WOX4 signaling pathway. BMC Plant Biol. doi:10.1186/1471-2229-13-94 (Artn 94)
  • Wu X, Chory J, Weigel D (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev Biol 309:306–316. doi:10.1016/j.ydbio.2007. 07.019
  • Wu Z, Wang W, Li Y, Rao X (2014) Development of polyclonal antibodies against nucleocapsid protein of watermelon silver mottle virus and their application to diagnostic. Acta Virol 58:167–172
  • Xu YY et al (2005) Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Mol Biol 57:773–784. doi:10.1007/s11103-005-0952-9
  • Zhang F, Wang YW, Li GF, Tang YH, Kramer EM, Tadege M (2014) STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. Plant Cell 26:650–664. doi:10.1105/tpc.113.121947
  • Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ (2011) Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. J Integr Plant Biol 53:493–506. doi:10.1111/j.1744-7909.2011.01054.x
  • Zhang X, Zong J, Liu JH, Yin JY, Zhang DB (2010) Genome-wide analysis of WOX gene family in Rice, Sorghum, Maize, Arabidopsis and Poplar. J Integr Plant Biol 52:1016–1026. doi:10.1111/j.1744-7909.2010.00982.x
  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1d88d345-74dc-40ff-8aef-5ae420ee453b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.