PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

Species richness, functional diversity and assemblage structure of insectivorous bats along an elevational gradient in tropical West Africa

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Rising global temperatures cause severe changes to the environment resulting, for example, in shifts in biomes and assemblages to higher elevational ranges. Therefore, it is integral to understand how species and assemblages will respond to this threat. Elevational gradients present a useful framework to measure potential changes to diversity due to climate change and human land use. Most studies focus on taxonomic diversity, and ignore functional diversity which provides a measure of the ecological roles of species within ecosystems. The aim of this study was to investigate taxonomic and functional diversity of as well as variation in assemblage structure of the insectivorous bat communities along the Mount Nimba elevational gradient. We predicted that both taxonomic and functional diversity would be negatively correlated with elevation, and that bat assemblages would show a nested pattern along the elevational gradient. Taxonomic diversity was calculated using species richness. Functional diversity of univariate and multivariate traits was calculated using two diversity indices: mean pairwise distance and mean nearest taxon distance. As predicted, species richness of bats was significantly negatively correlated with elevation. Functional diversity however, decreased significantly only at the highest elevation (and this may even be a sampling artifact given high human activities there in recent times). Contrary to predictions, metacommunity analyses revealed quasi-Gleasonian structuring of bat assemblages, indicating weak structuring forces along the elevational gradient. These results suggest that bat assemblages shifting in response to climate change along elevational gradients may change taxonomically but stay largely intact functionally.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.273-285,fig.,ref.

Twórcy

autor
  • School of Life Sciences, Biological Sciences Building, South Ring Road, Westville Campus, University of Kwa-Zulu Natal, Kwa-Zulu Natal 3630, Republic of South Africa
  • School of Life Sciences, Biological Sciences Building, South Ring Road, Westville Campus, University of Kwa-Zulu Natal, Kwa-Zulu Natal 3630, Republic of South Africa

Bibliografia

  • 1. Aguiar, L. M. S., E. Bernard, V. Ribeiro, R. B. Machado, and G. Jones. 2016. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5: 22–33. Google Scholar
  • 2. Aguirre, L. F. 2002. Structure of a Neotropical savanna bat community. Journal of Mammalogy, 83: 775–784. Google Scholar
  • 3. Aguirre, L. F., F. A. Montaño-Centellas, M. M. Gavilanez, and R. D. Stevens. 2016. Taxonomic and phylogenetic determinants of functional composition of Bolivian bat assemblages. PLoS ONE, 11: e0158170. Google Scholar
  • 4. Altshuler, D. L., and R. Dudley. 2006. The physiology and biomechanics of avian flight at high altitude. Integrative and Comparative Biology, 46: 62–71. Google Scholar
  • 5. Anderson, R. P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences, 1297: 8–28. Google Scholar
  • 6. Arlettaz, R., S. Godat, and H. Meyer. 2000. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93: 55–60. Google Scholar
  • 7. Bryant, J. A., C. Lamanna, H. Morlon, A. J. Kerhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the USA, 105: 11505–11511. Google Scholar
  • 8. Cadotte, M. W., and T. J. Davies. 2016. Phylogenies in ecology: a guide to concepts and methods. Princeton University Press, New Jersey, 264 pp. Google Scholar
  • 9. Cafaro, P. 2015. Three ways to think about the sixth mass extinction. Biological Conservation, 192: 387–393. Google Scholar
  • 10. Cavalheri, H., C. Both, and M. Martins. 2015. The interplay between environmental filtering and spatial processes in structuring communities: the case of Neotropical snake com munities. PLoS ONE, 10: e0127959. Google Scholar
  • 11. Chakraborty, A., P. K. Joshi, A. Ghosh, and G. Areendran. 2003. Assessing biome boundary shifts under climate change scenarios in India. Ecological Indicators, 34: 536–547. Google Scholar
  • 12. Chapin III, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie , et al. 2000. Consequences of changing biodiversity. Nature, 405: 234–242. Google Scholar
  • 13. Cisneros, L. M., K. R. Burgio, L. M. Dreiss, B. T. Klingbeil, B. D. Patterson, S. J. Presley, and M. R. Willig. 2014. Multiple dimensions of bat biodiversity along an extensive tropical elevational gradient. Journal of Animal Ecology, 83: 1124–1136. Google Scholar
  • 14. Cisneros, L. M., M. E. Fagan, and M. R. Willig. 2016. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in humanmodified landscapes. PeerJ, 4: e2551. Google Scholar
  • 15. Coe, M. 1975. Mammalian ecological studies on Mount Nimba, Liberia. Mammalia, 39: 523–588. Google Scholar
  • 16. Curran, M., M. Kopp, J. Beck, and J. Fahr. 2012. Species diversity of bats along an altitudinal gradient on Mount Mulanje, southern Malawi. Journal of Tropical Ecology, 28: 243–253. Google Scholar
  • 17. Dallas, T. 2014. Metacom: an R package for the analysis of metacommunity structure. Ecography, 37: 402–405. Google Scholar
  • 18. Dehling, D. M., S. Fritz, T. töpfer, M. Päckert, P. Estler, K. Böhning-Gaese, and M. Schleuning. 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 37: 1047–1055. Google Scholar
  • 19. Denys, C., B. Kadjo, A. D. Missoup, A. Monadjem, and V. Aniskine. 2013. New records of bats (Mammalia: Chiroptera) and karyotypes from Guinean Mount Nimba (West Africa). Italian Journal of Zoology, 80: 279–290. Google Scholar
  • 20. Denzinger, A., and H. Schnitzler. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviours of microchiropteran bats. Frontiers in Physiology, 4: 1–15. Google Scholar
  • 21. Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo. 2016. InfoStat versión 2016. InfoStat Group. Facultad de Ciencias Agrope cuarias, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar . Google Scholar
  • 22. Donoghue, M. J., and E. J. Edwards. 2014. Biome shifting in plant evolution. Annual Review of Ecology, Evolution and Systematics, 45: 547–572. Google Scholar
  • 23. Fahr, J., and N. Ebigbo. 2003. A conservation assessment of the bats of the Simandou Range, Guinea, with the first record of Myotis welwitschii (Gray. 1866) from West Africa. Acta Chiropterologica, 5: 125–141. Google Scholar
  • 24. Fahr, J., and E. K. V. Kalko. 2011. Biome transitions are centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography, 34: 177–195. Google Scholar
  • 25. Google Earth. 2015. Camp Four, Liberia. 7°342′44.04″N. 8°26′27.39″W, elevation 919 m, eye elevation 84.40 km. Ver. 7.1.5.1557. (April 10. 2013). Google Image Landsat. 2016. Available at http://www.earth.google.com . Google Scholar
  • 26. Graham, G. 1983. Changes in bat species diversity along an elevational gradient up the Peruvian Andes. Journal of Mam malogy, 64: 559–571. Google Scholar
  • 27. Graham, R. W., E. L. Lundelius Jr ., M. A. Graham, E. K. Schroeder, R. S. Toomey III , E. Anderson, A. D. Barnosky, J. A. Burns, C. S. Churcher, D. K. Grayson , et al. 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science, 272: 1601–1606. Google Scholar
  • 28. Granier, N., and L. Martinez. 2011. Conservation issues in the Nimba Mountains. Primatology Monographs, 7: 381–392. Google Scholar
  • 29. Happold, M., and D. C. D. Happold. 2013. Mammals of Africa. Volume IV: Hedgehogs. shrews and bats. Bloomsbury Publishing, London, UK, 800 pp. Google Scholar
  • 30. Hoiss, B.. J. Krauss, S. G. Potts, S. Roberts, and I. Steffan-Dewenter. 2012. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society, 279B: 4447–4456. Google Scholar
  • 31. Jones, G., D. Jacobs, D. Kunz, M. Willig, and P. Racey. 2009. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93–115. Google Scholar
  • 32. Juste, B. J., and J. Perez Del Val. 1995. Altitudinal variation in the subcanopy fruit bat guild in Bioko Island, Equatorial Guinea, Central Africa. Journal of Tropical Ecology, 11: 141–146. Google Scholar
  • 33. Kembel, S. W.. P. D. Cowan , M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26: 1463–1464. Google Scholar
  • 34. King, J. R., and D. A. Jackson. 1999. Variable selection in large environmental data sets using principal components analysis. Environmetrics, 10: 67–77. Google Scholar
  • 35. Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22: 569–574. Google Scholar
  • 36. Laliberté, E., and P. Legendre. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91: 299–305. Google Scholar
  • 37. Larsen, R. J., K. A. Boegler, H. H. Genoways, W. P. Masefield, R. A. Kirsch, and S. C. Pedersen. 2007. Mist netting bias, species accumulation curves, and the rediscovery of two bats on Montserrat (Lesser Antilles). Acta Chiropterolo gica, 9: 423–435. Google Scholar
  • 38. Lazure, L., and M. B. Fenton. 2011. High duty cycle echolocation and prey detection by bats. Journal of Experimental Biology, 214: 1131–1137. Google Scholar
  • 39. Leibold, M. A., and G. M. Mikkelson. 2002. Coherence, species turnover, and boundary clumping: elements of metacommunity structure. Oikos, 97: 237–250. Google Scholar
  • 40. Linden, V. M. G., S. M. Weier, I. Gaigher, H. J. Kuipers, M. J. A. Weterings, and P. J. Taylor. 2014. Changes of bat activity, species richness, diversity and community composition over an altitudinal gradient in the Soutpansberg range, South Africa. Acta Chiropterologica, 16: 27–40. Google Scholar
  • 41. López-González, C., S. J. Presley, A. Lozano, R. D. Stevens, and C. L. Higgins. 2012. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography, 39: 177–192. Google Scholar
  • 42. MacSwiney, G. M. C., F. M. Clarke, and P. A. Racey. 2008. What you see is not what you get: the role of ultrasonic detec tors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45: 1364–1371. Google Scholar
  • 43. Marshall, C. A. M., and W. Hawthorne. 2013. Important plants of Northern Nimba County, Liberia: a guide to the most useful, rare or ecologically important species, with Ma no names and uses. Forestry Institute, Oxford, UK, 460 pp. Google Scholar
  • 44. Martins, M. A., W. D. De Carvalho, D. Dias, D. De Franca, M. B. De Oliveira, and A. L. Peracchi. 2015. Bat species richness (Mammalia, Chiroptera) along an elevational gradient in the Atlantic Forest of Southeastern Brazil. Acta Chiropterologica, 17: 401–409. Google Scholar
  • 45. Mason, N. W. H., and D. Mouillot. 2013. Functional diversity measures. Pp. 597–608, in Encyclopedia of biodiversity. Volume 3, 2nd edition ( S. A. Levin, ed.). Academic Press. Waltham, MA, 5504 pp. Google Scholar
  • 46. McCain, C. M. 2007. Could temperature and water availability drive elevational richness patterns? A global case study for bats. Global Ecology and Biogeography, 16: 1–13. Google Scholar
  • 47. McCain, C. M., and R. K. Colwell. 2011. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 14: 1236–1245. Google Scholar
  • 48. McCann, K. S. 2000. The diversity-stability debate. Nature, 405: 228–233. Google Scholar
  • 49. Minitab. 2000. MINITAB user's guide 2: Data analysis and quality control. Release 13. for Windows. Minitab Inc., USA. Google Scholar
  • 50. Minitab. 2010. Minitab 17 statistical software. Minitab Inc., State College, Pennsylvania, USA. Google Scholar
  • 51. Monadjem, A., P. J. Taylor, F. P. D. Cotterill, and M. C. Schoeman. 2010. Bats of Southern and Central Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg, xii + 596 pp. Google Scholar
  • 52. Monadjem, A., L. Richards, P. J. Taylor, C. Denys, A. Dower, and S. Stoffberg. 2013a. Diversity of Hipposideridae in the Mount Nimba massif, West Africa, and the taxonomic status of Hipposideros lamottei. Acta Chiropterologica, 15: 341–352. Google Scholar
  • 53. Monadjem, A., L. Richards, P. J. Taylor, and S. Stoffberg. 2013b. High diversity of pipistrelloid bats (Vespertilionidae: Hypsugo, Neoromicia, and Pipistrellus) in a West African rainforest with the description of a new species. Zoological Journal of the Linnean Society, 167: 191–207. Google Scholar
  • 54. Monadjem, A., L. Richards, and C. Denys. 2016. An African bat hotspot: the exceptional importance of Mount Nimba for bat diversity. Acta Chiropterologica, 18: 359–375. Google Scholar
  • 55. Moritz, C., J. Patton, C. Conroy, J. Parra, G. White, and S. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park. USA. Science, 322: 261–264. Google Scholar
  • 56. Mouchet, M., S. Villéger, N. Mason, and D. Mouillot. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24: 867–876. Google Scholar
  • 57. Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28: 65–82. Google Scholar
  • 58. Patterson, B. D., V. Pacheco, and S. Solari. 1996. Distribution of bats along an elevational gradient in the Andes of South-Eastern Peru. Journal of Zoology (London), 240: 637–658. Google Scholar
  • 59. Patterson, B. D., and P. Webala. 2012. Keys to the bats (Mammalia: Chiroptera) of East Africa. Fieldiana (Life and Earth Sciences), 6: 1–60. Google Scholar
  • 60. Pla, L., F. Casanoves, and J. Di Rienzo. 2012. Quantifying functional diversity. Springer, New York, 98 pp. Google Scholar
  • 61. Poilecot, P., and N.-S. Loua. 2009. Les feux dans les savanes des monts Nimba, Guinée. Bois et Forêts Tropiques, 301: 51–66. Google Scholar
  • 62. Presley, S. J., C. L. Higgins, C. López-González, and R. D. Stevens. 2009. Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia, 160: 781–793. Google Scholar
  • 63. Presley, S. J., C. L. Higgins, and M. R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos, 119: 908–917. Google Scholar
  • 64. R Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.r-project.org . Google Scholar
  • 65. Schoeman, M. C., and D. S. Jacobs. 2008. The relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in Southern Africa. PLoS ONE, 3: e3715. Google Scholar
  • 66. Schoeman, M. C., and D. S. Jacobs. 2011. The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia, 166: 493–506. Google Scholar
  • 67. Schoeman, M. C., F. D. P. Cotterill, P. J. Taylor, and A. Monadjem. 2013. Using potential distributions to explore environmental correlates of bat species richness in southern Africa: effects of model selection and taxonomy. Current Zoology, 59: 279–293. Google Scholar
  • 68. Schoeman, M. C., S. M. Goodman, B. Ramasindrazana, and D. Koubínová. 2015. Species interactions during diversification and community assembly in Malagasy Miniopterus bats. Evolutionary Ecology, 29: 17–47. Google Scholar
  • 69. Shimada, M. 2000. A survey of the Nimba mountains, West Africa from three routes: confirmed new habitat and ant-catching wand use of chimpanzees. Pan Africa News, 7: 7–10. Google Scholar
  • 70. Smith, M. A., D. M. Wood, D. H. Janzen, W. Hallwachs, and P. D. N. Hebert. 2006. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of the USA, 104: 4967–4972. Google Scholar
  • 71. Smith, A., M. C. Schoeman, M. Keith, B. F. N. Erasmus, A. Monadjem, A. Moilanen, and E. DiMinin. 2016. Synergistic effects of climate change and land-use change on representation of African bats in priority conservation areas. Ecological Indicators, 69: 276–283. Google Scholar
  • 72. Solomon, S., G.-K. Plattner, R. Knutti, and P. Fried Lingstein. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of the USA, 106: 1704–1709. Google Scholar
  • 73. Soriano, P. J. 2000. Functional structure of bat communities in tropical rainforests and Andean cloud forests. Ecotropicos, 13: 1–20. Google Scholar
  • 74. Swenson, N. G. 2014. Functional and phylogenetic ecology in R. Springer, New York, 201 pp. Google Scholar
  • 75. Weier, S. M., V. M. G. Linden, I. Gaigher, P. J. C. White, and P. J. Taylor. 2017. Changes of bat species composition over altitudinal gradients on northern and southern aspects of the Soutpansberg mountain range, South Africa. Mammalia, 81: 49–60. Google Scholar
  • 76. Willig, M. R., and S. J. Presley. 2016. Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology, 32: 421–436. Google Scholar
  • 77. Willig, M. R., S. J. Presley, C. P. Bloch, I. Castro-Arellano, L. M. Cisneros, C. L. Higgins, and B. T. Klingbeil. 2011. Tropical metacommunities along elevational gradients: effects of forest type and other environmental factors. Oikos, 120: 1497–1508. Insectivorous bats along an elevational gradient 285 Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-1d8627d4-36c7-40c3-ac67-bb195badaf07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.