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Abstract The Svalbard Archipelago has experienced some of the most severe temperature 
increases in the Arctic in the last three decades. This temperature rise has accelerated sea-ice 
melting along the coast of the archipelago, thus bringing changes to the local environment. In 
view of the importance of the near-future distribution of land-fast sea ice along the Svalbard 
coast, the available observation data on the ice extent between 1973 and 2018 are used herein 
to create a random forest (RF) model for predicting the daily ice extent and its spatial distribu- 
tion according to the cumulative number of freezing and thawing degree days and the duration 
of the ice season. Two RF models are constructed by using either regression or classification 
algorithms. The regression model makes it possible to estimate the extent of land-fast ice with 
a root mean square error (RMSE) of 800 km 

2 , while the classification model creates a cluster 
of submodels in order to forecast the spatial distribution of land-fast ice with less than 10% 
error. The models also enable the reconstruction of the past ice extent, and the prediction of 
the near-future extent, from standard meteorological data, and can even analyze the real-time 
spatial variability of land-fast ice. On average, the minimum two-monthly extent of land-fast 
sea ice along the Svalbard coast was about 12,000 km 

2 between 1973 and 2000. In 2005—2019, 
however, the ice extent declined to about 6,000 km 

2 . A further increase in mean winter air 
temperatures by two degrees, which is forecast in 10 to 20 years, will result in a minimum two- 
monthly land-fast ice extent of about 1,500 km 

2 , thus indicating a trend of declining land-fast 
ice extent in this area. 
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Peer review under the responsibility of the Institute of Oceanology of th

https://doi.org/10.1016/j.oceano.2022.03.008 
0078-3234/ © 2022 Institute of Oceanology of the Polish Academy of Scie
article under the CC BY-NC-ND license ( http://creativecommons.org/lice
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Å

. Introduction 

he Svalbard Archipelago is the largest land area in the Eu- 
opean part of the Arctic. The West Spitsbergen Current and 
he semi-continuous weather front between the cold masses 
f Arctic air and the warmer air of the polar cell strongly 
nfluence the Svalbard climate. Because of the low air tem- 
erature and the highly-indented coastline, the coastal wa- 
ers of Svalbard are covered every year by land-fast sea ice 
referred to hereafter as fast ice), i.e., ice that holds fast 
o the coastline or the sea bottom. Fast ice usually accu- 
ulates in fjords, between islands, and in shallow inshore 
aters. In the Arctic, fast ice is biologically significant as 
 breeding and molting site for seals, mainly ringed seals 
 Pusa hispida ), which are the principal prey of polar bears 
 Ursus maritimus ) ( Krafft et al . , 2006 ; Smith and Lyder-
en, 1991 ). Moreover, fast ice protects coastal areas from 

rosion by wave action for as long as it persists. The ef- 
ects of climate change are intensified in this region, with 
he Arctic experiencing one of the largest increases in air 
emperature in the present century ( Førland et al . , 2011 ; 
saksen et al., 2016 ). Since the beginning of the 20th cen- 
ury, meteorological observations have shown that the air 
emperature has always fluctuated in this region, and the 
emperature has risen by 4—5 °C during the last 40—50 years 
 Hanssen-Bauer et al., 2019 ). Although the winter air tem- 
eratures between the 1960s and early 1990s were only 
lightly higher than at the beginning of the 20th century, the 
emperature increased by the beginning of the 21 st century 
nd continues to do so ( Nordli et al., 2014 , 2020 ). 
The mean annual temperature changes at three meteo- 

ological stations in the Svalbard Archipelago between 1975 
nd 2018 are presented in Figure 1 , along with the mean 
inter temperature changes, which is when land-fast ice 
redominantly occurs. Current forecasts envisage a mean 
nnual temperature rise in this region of at least 1 °C per 
igure 1 The air temperature changes at three meteorological sta
olid lines show the annual mean, and the dashed lines show the winte
 rolling yearly mean (left). The locations of the meteorolgical statio
lesund (78.923 °N, 11.933 °E), and Hopen (76.5 °N, 25.067 °E) (right).

536 
ecade until the mid-21 st century ( Hanssen-Bauer et al., 
019 ). 
The large-scale permanent monitoring of local sea 

ce conditions in the fjords and coastal waters of Sval- 
ard began just under 20 years ago using the new tech- 
ology of high and medium resolution satellite imag- 
ng, mainly via C-band Synthetic Aperture Radar (SAR) 
ensors ( Hanssen-Bauer et al., 2019 ; Johansson et al., 
020 ; Muckenhuber et al., 2016 ) and GIS-based auto- 
atic or semi-automatic systems for sea ice classification 

 Zakhvatkina et al., 2019 ). Since 2005, the Norwegian Ice 
ervice has produced ice charts of the Svalbard area al- 
ost daily (Monday—Friday). Since the new methods of 

ce mapping were introduced, it has been possible gradu- 
lly to improve the accuracy of the maps. Previously, fast 
ce conditions in Svalbard were assessed mainly from var- 
ous observations made as part of several fast-ice related 
rojects ( Gerland et al., 2008 ; Hanssen-Bauer et al., 2019 ; 
huravskiy et al., 2012 ). For example, analyses of the total 
umber of fast-ice days before 1 st April (the ring seal pup- 
ing date) were performed using satellite data from 1974 
o 1988 to reveal a substantial interannual variability of 0—
55 days in the fjords of northern Spitsbergen (the largest 
sland of Svalbard), and 38—107 days on the western coast 
 Smith and Lydersen, 1991 ). 
There have been several reports on local fast ice condi- 

ions in the last 20 years. For example, an analysis of the 
emporal changes in ice cover during 2000—2014 in Isfjor- 
en and Hornsund using SAR and optical images revealed a 
ignificant decrease in the extent of fast ice in both fjords 
 Muckenhuber et al., 2016 ). Meanwhile, systematic observa- 
ions in Kongsfjorden since 2003 initially detected substan- 
ial interannual variability in the fast ice extent with inter- 
als of 2—3 years or more ( Gerland and Renner, 2007 ), i.e.,
 similar pattern to that observed in the 1970s and 1980s. 
owever, more recent observations have indicated that the 
tions in the Svalbard Archipelago between 1975 and 2018. The 
r (December—May) means. Eight-year smoothing was used with 
ns: Isfjorden—Barentsburg (78.1 °N, 14.3 °E), Kongsfjorden—Ny- 
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ce extent is smaller in most years and that the ice sea- 
on is becoming shorter ( Pavlova et al . , 2019 ). In particular,
here has been a smaller extent of fast ice near the north- 
rn coasts of Svalbard, although occasional observations 
ave shown that the fast ice cover can last from Novem- 
er until July ( Wang et al . , 2013 ). It is generally agreed
hat the duration of fast ice cover around Svalbard has be- 
ome perceptibly shorter in the last ten years ( Dahlke et al . ,
020 ; Hanssen-Bauer et al . , 2019 ; Pavlova et al . , 2019 ).
n understanding of this temporal distribution is also vi- 
al in studying environmental changes, coastal erosion, and 
he ecology of many species ( Hanssen-Bauer et al . , 2019 ; 
rafft et al . , 2006 ; Smith and Lydersen, 1991 ). Hence, the
resent project aims to determine the changes in the ex- 
ent of fast ice and to predict its near-future extent and 
istribution. 

. Material and methods 

.1. Meteorological data 

wo sets of data were used in the present work — one for 
odeling and the other for assessing the modeling method. 

n the first case, observational meteorological data from 

he Hopen, Barentsburg, and Ny- ̊Alesund stations between 
973 and 2019 were acquired as daily summaries, includ- 
ng minimum, maximum and average air temperatures, from 

he National Centres for Environmental Information (NCEI) 
f the National Oceanic and Atmospheric Administration 
NOAA) ( https://www.ncdc.noaa.gov/cdo-web/datatools/ 
electlocation ) ( Menne et al. , 2012 ). In the second case, 
he Arctic Regional Reanalysis dataset of hourly short-term 

orecasts of surface meteorological variables at a 2.5- 
m resolution was used. This dataset was produced using 
he HARMONIE-AROME regional numerical weather predic- 
ion model ( https://cds.climate.copernicus.eu/cdsapp#! 
dataset/reanalysis- carra- single- levels?tab=overview ), and 
he 2 m daily air temperatures at noon from 1998 to 2019 
ere downloaded as multivariate rasters for use in the 
resent study. 
The mean annual and winter air temperature changes be- 

ween 1975 and 2018 at the above-mentioned meteorologi- 
al stations reveal a significant increase in the winter mean 
emperature between 2000 and 2005 ( Figure 1 ). This time 
eriod was therefore used herein to divide the analyzed pe- 
iod into two parts. 

.2. Ice data 

he following three sets of sea-ice data were used in the 
resent project: (i) the daily operational ice charts pro- 
uced by the Norwegian Ice Service in 2005—2018 for the 
valbard Archipelago were downloaded from the archive 
ataset of the Norwegian Meteorological Institute ( https:// 
ryo.met.no/archive/ice-service/icecharts/quicklooks/ ); 
ii) the ice charts for 1973—1998 were downloaded in 
ector.shp format from the Climate and Cryosphere 
istorical Ice Chart Archive ( http://www.climate- 
ryosphere.org/resources/historical- ice- chart- archive/gis- 
ata ), and (iii) the 10 km x 10 km raster-gridded 
537 
aily sea ice concentration data for the entire Arc- 
ic between 2003 and the present were obtained 
rom the US. National Snow and Ice Data Center 
 https://nsidc.org/data/G10033/versions/1 ). The lat- 
er data set was created using various methods according to 
vailability over time. Thus, the earliest charts were pro- 
uced by combining sources such as aerial reconnaissance, 
urface observations, and airborne and ship reports. Sub- 
equently, infrared and visible-band satellite imagery from 

he Advanced Very High-Resolution Radiometer (AVHRR) 
as used, and currently, data from the Synthetic Aperture 
adar and Advanced Microwave Scanning Radiometer are 
sed. According to Yu et al. (2014) , the relative uncertainty 
n chart-derived fast ice extent can range from 5% to 25% on 
verage. As this estimation was made for the 25-km resolu- 
ion National Ice Center charts produced in 1975—2006, the 
elative uncertainty is assumed to be 5—20% herein. The GIS 
ector and raster layers with a georeferenced coastline and 
and-water mask of the Svalbard Archipelago were obtained 
rom the GIS Centre, University of Gda ńsk. 

.3. Data pre-processing 

he observational meteorological data contained fields with 
ncomplete values of the mean, maximum, and minimum 

aily air temperatures. The minimum and maximum values 
ontained only occasional gaps, whereas gaps in the mean 
alues were very frequent. The data pre-processing work- 
ow involved the following two steps: (i) a linear regression 
odel was built to estimate the average daily temperature 
rom the minimum and maximum values, then (ii) a regres- 
ion equation was used to fill gaps in the average daily tem-
erature within each data set. These data are presented in 
igure 1 above. 
The next step was to calculate the cumulative number of 

reezing degree days (FDD) and thaw degree days (TDD) by 
mploying Stefan’s Law ( Leppäranta, 1993 ): 

 DD = 

∫ t 

0 

[
T f − T 0 ( t ) 

]
dt for T 0 < T f (1) 

 DD = 

∫ t 

0 

[
T 0 ( t ) − T f 

]
dt for T 0 > T f (2) 

here t is time, T f is the freezing temperature, and T 0 ( t )
s the average daily temperature. The freezing temperature 
s −1.9 °C (the freezing temperature of seawater). The for- 
ulas generally use the day as the unit of time. The FDD is
lso referred to as the sum of negative degree days, and 
s used to simplify the formula for estimating ice thick- 
ess ( Leppäranta, 1993 ) by providing the cumulative sum of 
elow-zero temperatures for each successive day. The TDD 

s similar, but with respect to temperatures above −1.9 °C. 
erein, it was assumed that the ice season starts on 1 st 

eptember and lasts for 300 days until June. The defini- 
ion of the ice season allows the number of ice seasons and 
he number of days within a particular ice season (ICSD) to 
e assigned to each day. Hence, a tidy text format file was 
reated for 13,794 days (1/09/1973—27/06/2019). The fol- 
owing two spatial data models were used to organize the 
eoreferenced data for analysis: (i) a set of 110 randomly 
istributed points in an area of fast ice localization, and (ii) 

https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-carra-single-levels?tab=overview
https://cryo.met.no/archive/ice-service/icecharts/quicklooks/
http://www.climate-cryosphere.org/resources/historical-ice-chart-archive/gis-data
https://nsidc.org/data/G10033/versions/1


J.A. Urba ́nski and D. Litwicka 

Figure 2 The spatial data models used in the present project: 
110 points and a grid of 4782 hexagonal polygons. 
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 grid of 4782 polygonal cells with areas of 16 km 

2 . Each 
odel was assigned a unique ID to points and polygons, 
s indicated in Figure 2 . The grid of polygons defines the 
roject area of interest, which is 76512 km 

2 . 
The Arctic Regional Reanalysis dataset of daily air tem- 

erature was assigned to the randomly distributed points 
resented in Figure 2 by extracting its values from rasters. 
n the resulting tidy text format, the file rows represent days 
n 110 columns, with the air temperature at each point. 
The scanned ice cover maps were manually or automat- 

cally digitized to time series of rasters with the following 
lasses: 0 (water), 1 (land), 2 (open water), 3 (very open 
rift ice), 4 (open drift ice), 5 (close drift ice), 6 (very 
lose drift ice), and 7 (fast ice). The spatial resolution of 
he rasters was 300 m, and the fast ice classes were used 
o convert the vector ice charts to the raster format with 
he same shape and spatial resolution. Combining these two 
ce sets gives the time series of 1960 rasters for the years 
973—2018, with a gap between 1999 and 2004. It contains, 
n average, one or two ice concentration maps per week. 
he tidy text format file of fast ice contains rows repre- 
enting each map, with a separate column for each hexagon 
4782 columns in total), with classes 1 and 0 indicating the 
resence and absence of fast ice. 
The daily sea ice concentration raster gridded data for 

he entire Arctic was used along with the fast ice class to 
reate an additional text file with two columns representing 
ime and fast ice extent in the area of interest. 

.4. Machine learning modeling 

he RF regression and classification models were used to 
redict the ice cover extent and to classify the hexag- 
nal grid cells for the two classes (ice/no ice) on any 
ay using the FDD, TDD, and ICSD as predictive fea- 
ures. The RF model, introduced by Breiman (2001) , has 
een used in many geophysical and environmental applica- 
ions ( Lutz et al . , 2018 ; Mutanga et al . , 2012 ; Rodriguez-
aliano et al., 2014 , 2015 ). In this method, random decision 
rees are created by bootstrapping data in which the sam- 
le data are drawn and replaced. Then the majority vote or 
538 
verage prediction across all trees is used to generate the 
esult. The main advantages of the RF model are that over- 
tting can be reduced by averaging several trees and that no 
tatistical assumptions are required regarding normal distri- 
ution and data linearity. The model also allows one to mea- 
ure the relative importance of each feature for the predic- 
ion. Furthermore, it is easy to apply, and the few default 
yperparameters usually give good results. However, one of 
he model’s shortcomings is that it is impossible to extrap- 
late beyond the range of values in the training set. As a 
esult, predictions can be made only in the range of values 
epresented by the training data set. In the present study, 
he range of values in the training set is 0—2800 for the FDD,
.1—300 for the TDD, and 0—38288 km 

2 for the ice cover 
xtent. The typical workflow uses a training set containing 
he dependent and independent variables to train the RF 
odel, and a test data set to validate the results. The RF 
odeling was performed using the Python Scikit-learn pack- 
ge ( Pedregosa et al., 2011 ). The following two models were 
reated: (i) a regression model for predicting the total fast 
ce extent (in km 

2 ) along the coast of Svalbard for every day
ith available FDD, TDD, and ICSN data, and (ii) a classifica- 
ion model for predicting the presence or absence of fast ice 
n each hexagonal cell of the grid (by assigning the values 1 
r 0) and for building the cluster of independent models in 
rder to predict the spatial distribution of fast ice. 
The regression and classification modeling uses a train- 

ng set to build a model and test sets to validate the model.
oth sets are randomly created by splitting the basic set 
f daily data with known FDD, TDD, and ICSN, along with 
he total fast ice extents for the regression model and the 
resence or absence values of each cell in the cluster for 
he classification model. A standard method for evaluating 
he accuracy of the model on continuous data (total fast ice 
xtent) is the root mean square error (RMS). However, the 
rror rate is used for evaluating the machine learning classi- 
cation model, where the error rate is defined as one minus 
he accuracy, and the accuracy is the ratio of the number of 
bservations with correct classification to the total number 
f classified observations. The Scikit-learn functionality also 
llows the tuning of hyperparameters and the analysis of 
eature importance, the latter being a measure of how the 
andom shuffle of a particular feature influences the result. 
rom 1973 to the present time, the available data range 
akes the RF method applicable for the present project. In 
iew of the spatial scale (a few hundred square kilometers) 
nd the statistical nature of the models, it is assumed that 
he FDD and TDD are highly autocorrelated and that the val- 
es from one point in Isfjorden can be used. This assumption 
s discussed in detail later. 
The random hyperparameters used in the present work 

re listed in Table 1 . These were tuned by using a field cross-
alidation grid. 
The accuracy of the model was evaluated via the follow- 

ng two steps: (i) the feature importance was evaluated us- 
ng Scikit-learn, giving accuracies of 60%, 30%, and 10% for 
he FDD, TDD, and ICESD, respectively, and (ii) the RMS er- 
or was calculated as 802 km 

2 , which is approximately the 
rea of 50 cells in Figure 2 . The RF classification model us-
ng a cluster of 4782 independent submodels uses the same 
eatures as the regression model. The model maps the fast 
ce distribution in time. The array of fast ice cells can be 
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Table 1 The hyperparameters tested and used in sklearn.ensemble.RandomForestRegressor (scikit-learn 0.23.2). 

Hyperparametres Hyperparameter grid values tested Best hyperparameters 

Using bootstrap sample when building trees. True, False True 
The maximum depth of tree. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None 80 
The number of features considered when 
looking for the best split. 

auto, sqrt auto 

The maximum number of samples required 
to be at a leaf node. 

1,2,4 2 

The minimum number of samples required 
to split an internal mode. 

2,5,10 2 

The number of trees in the forest. 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 
2000 

1800 

Figure 3 The rate errors in the predicted spatial distribution 
of fast ice by the classification model. 
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ummed for any day to give the fast ice cover in km 

2 . The
ocal ice cover depends on, among other things, the water 
epth, water heat flux, wave action, water circulation, wa- 
er heat flux, and local microclimate. All these features are 
rrelevant in the machine learning process if the dependent 
ariable (target) represents a single location. The model 
ses only basic features from one location and predicts new 

alues only for that particular location. As a result, the ro- 
ust autocorrelation of features in space is irrelevant. The 
esults of error evaluation for the fast ice distribution model 
re presented as a rate error map in Figure 3 . The rate er-
ors were calculated independently for each cell using the 
orresponding rows of the validation set. Thus, the classifi- 
ation model exhibits a less than 10% error in predicting the 
patial distribution of fast ice for most of the study area. 
ow error values cover the area, with occasional fast ice 
nly. 

. Results 

.1. Cumulative freezing degree days 

he cumulative freezing degree days were previously used 
y Yu et al. (2014) to explain the changes in fast ice extent 
n the Arctic because this approach provides a measure of 
539 
oth the changing surface air temperature and its cumula- 
ive effect throughout an entire ice growth season. The FDD 

s the simplest parameter that correlates well with fast ice 
uration due to its cumulative nature ( Leppäranta, 2014 ). 
s an ice season straddles two consecutive years, starting in 
utumn and ending in early summer, all statistics should ap- 
ly to an ice season rather than a year. The cumulative FDD 

n each ice season from 1973/74 to 2018/19 in Isfjorden is 
resented in Figure 4 , where the values are assigned to the 
ear when the ice season begins. 

.2. Fast Ice extent in Svalbard 

n RF regression model was used to model the changes in 
ast ice extent in the area of interest, with a total surface 
f about 76,000 km 

2 ( Figure 5 ). The extent of fast ice fluctu-
tes from year to year with 3—4 year cycles of high and low
alues. Two periods of ice extents larger than 25,000 km 

2 

ppeared before 1990, separated by periods with less exten- 
ive fast ice. The winter season fast ice extent is larger than 
5,000 km 

2 on only a few occasions after 2000, whereas such 
ce seasons are common before 2000. The modeled extents 
re compared with the results of Yu et al. (2014) for the 
eriod 1975—2007. However, their analysis was performed 
sing data with a spatial resolution of 25 km 

2 , which may be
oo coarse for the Svalbard fjords. Nevertheless, the two- 
ime series show several similarities. They both have ice ex- 
ents of less than 15,000 km 

2 for nearly all ice seasons after
000, and only a few such low extents before. The winters 
ith large extents, such as 1977—1978 and 1981—1982 are 
lso visible in both. However, the maximum fast ice extents 
eported by Yu et al. (2014) are larger than 40,000 km 

2 . 
his is because they occasionally recorded fast ice beyond 
he area of interest of the present work. 

.3. Distribution of fast ice extent 

he cell net classification model makes it possible to esti- 
ate the spatial distribution of fast ice for any day. Fur- 
hermore, as the created time series is complete, it is easy 
o calculate statistics for fast ice extent within any time 
ange. For example, the average duration of fast ice in the 
eriods 1973—2000 and 2005—2019 are seen to differ signif- 
cantly ( Figure 6 a and b). According to Dahlke et al. (2020) ,
uch time ranges emphasize the stationary ice situation be- 
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Figure 4 The cumulative freezing degree days (FDD) in Isfjorden during the ice seasons 1973/74 to 2018/19 (assigned to the year 
when the ice season starts). The vertical red line indicates the year 2005 as the start of warmer winters, and the horizontal line 
shows the minimum FDD before 2005 (the season 1984/85 was the one that determined this level). 

Figure 5 The time series of fast ice extent obtained using the regression model, where the orange line shows 10-year rolling 
mean. 
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ore 2000 and the significantly reduced ice cover in recent 
imes. 
Between 1973 and 2000, at least half of the surface area 

f the fjords in west Spitsbergen was covered by fast ice for 
 to 5 months, while the fjords in northern Spitsbergen were 
ntirely covered by fast ice for the same length of time. 
he northwestern Spitsbergen coast also had fast ice cover 
or 4—5 months ( Figure 6 a). The east coast, where there 
re no fjords, was covered by fast ice, mainly in the bays. 
etween 2005 and 2019, however, the distribution and du- 
540 
ation of fast ice cover changed dramatically. In the fjords 
f West Spitsbergen, fast ice persisted for four months only 
t their heads, whereas those in northern Spitsbergen were 
overed by fast ice for less than half the fjord lengths, 
sually for two months and only locally for three months 
 Figure 6 b). The most significant differences in duration are 
n the fjords of Spitsbergen, with the largest changes be- 
ng in the northern ones. Throughout this area, the duration 
as been reduced by 3—4 months. Such dramatic changes 
ave occurred only locally; elsewhere, the reduction has 
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Figure 6 The mean distribution of the fast ice duration in Svalbard (a) during the ice seasons of 1973—2000, (b) during the ice 
seasons of 2005—2019, and (c) in the near future, assuming a 2 °C increase in winter air temperature. 

Table 2 The extent of fast ice for various durations of ice cover, with durations of more than 2 months indicated in bold. 

Duration of fast ice cover 1973—2000 extent (km 

2 ) 2005—2019 extent (km 

2 ) 2005—2019 + 2 °C; near-future extent (km 

2 ) 

1 week—1 month 18 059 11 255 6 085 
1—2 months 7 464 4 119 1 341 
2—3 months 4 467 2 564 712 
3—4 months 2 363 12 320 2 391 6 177 301 1 522 

4—5 months 1 830 930 356 
more than 5 months 3 660 292 153 
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enerally been from 1 to 3 months. In northern Svalbard, 
he duration of fast ice has decreased by two months; else- 
here, the changes are no greater than one month, and lo- 
ally no more than two months. The significant changes re- 
ate mainly to the fjord’s branches (e.g. in Isfjorden), where 
he fast ice cover before 2000 was long-lasting. 
The map in Figure 6 c shows the model scenario used in 

he present study, in which the average fast ice duration 
or the years 2005—2019 is projected into the future 10—
0 years, based on the two-degree increase in the winter 
ir temperature predicted by Hanssen-Bauer et al . (2019) . 
ere, a dramatic decrease in the ice extent is predicted 
cross the entire area. The areas of fast ice extent accord- 
ng to duration are presented in Table 2 . However, these 
otal values will differ from the modeled maximum areas 
ecause the ice cover may occur at different times. Accord- 
ng to the validation procedure described above, the values 
n Table 2 have an error rate no greater than 10%. 

. Discussion 

lthough many papers describe the decrease of fast ice 
xtent in Svalbard (e.g., Gerland et al . , 2008 ; Hanssen- 
auer et al., 2019 ; Zhuravskiy et al . , 2012 ), no prediction
as made therein regarding the near future. Nevertheless, 
541 
iven the firm basis of air temperature forecasts, these can 
e used to model the future fast ice extent. Indeed, the 
rediction of fast ice extent is vital for the analysis of many 
hysical and biological processes. Among these, the most 
mportant physical processes are the terrestrial discharge 
f freshwater ( McClelland et al., 2012 ) and coastal ero- 
ion ( Frederick et al . , 2016 ). In addition, changes in the
xtent of fast ice have significant ecological consequences 
 Krafft et al., 2006 ; Smith and Lydersen, 1991 ). 
The important assumption in the present project is that 

he air temperature changes have strong spatial autocor- 
elation, thus enabling spatial modeling of the entire area 
ased on the temperature at one point only. The cumulative 
DD was previously used by Yu et al. (2014) to understand 
he long-term changes in fast ice in the Arctic. Hence, the 
emporal and spatial distributions and their correlation with 
he FDD were analyzed in the present study using the Arc- 
ic Regional Reanalysis dataset of hourly short-term fore- 
asts of surface meteorological variables. As the aim was 
o use the FDD series from Isfjorden, all series were corre- 
ated with this point. Due to the massive amount of data, 
he FDD was calculated using the air temperature at noon 
nstead of the mean daily air temperature. This is justi- 
ed because the elevation of the sun doesn’t change sig- 
ificantly during the day and, hence, the daily temperature 
ange is small. The analysis was performed using a 110-point 
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Figure 7 The cross-correlation of air temperature residuals (a). The mean maximum seasonal cumulative freezing degree days 
(FDD) (b). The decadal change in FDD relative to the mean (c). 
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ime series of daily mid-day air temperatures during 1998—
019 ( Figure 2 ). Because the cross-correlation is impacted 
y time series dependence, the correlation analyses were 
erformed on temperature residues. 
The results of the correlation analyses are presented in 

igure 7 . For most of the analyzed areas, the correlation co- 
fficients of temperature residues with Isfjorden are higher 
han 0.8 ( Figure 7 a). Only in the northern-western parts of 
ordaustlandet do the coefficients decrease to 0.74. De- 
pite the influence of various water masses, the west and 
ast coast air temperatures correlate well, with values of 
bout 0.9. This strong correlation is essential when build- 
ng a total regression model and distributed classification 
odels of fast ice extent based on one-point FDD and TDD 

alues. Meanwhile, the mean maximum ice season FDD is 
een to change gradually from the southwest to north-east 
n the range 600 to 2400 days ( Figure 7 b), in agreement 
ith the results of Yu et al. (2014) for the years 1977—
007. Further, the results in Figure 7 c indicate that the esti- 
ated changes in FDD relative to the mean value per decade 
re higher than 15% for all areas. The fastest changes 
ake place near Sørkapp, with a 40% decrease per decade, 
hile the smallest changes occur at northern-western 
pitsbergen. 
As detailed in the Materials and methods section, three 

ifferent data sets were used to create and evaluate a con- 
inuous picture of fast ice changes near the coasts of Sval- 
ard ( Figure 8 ). Here, all three data sets contain classified 
and-fast ice. The reliability of this classification is reflected 
n the metadata for each dataset, and is not within the 
cope of the present project. 
542 
The time series of FDD was calculated for Isfjorden. As 
he air temperature in Kongsfjorden is nearly identical, 
he FDD will be very similar in both fjords. The results in 
igure 4 confirm the observed shortening of the fast ice sea- 
on from 2005/2006 onwards ( Pavlova et al., 2019 ). Prior to 
hat season, the FDD oscillated with a frequency of a few 

ears, varying between 1800 and 2300 days, with an over- 
ll decreasing trend. After 2005/2006, the FDD was signifi- 
antly higher than the 1973—2005 (32-season) minimum in 
nly two out of 13 subsequent seasons, but was lower than 
he minimum (between 900 and 1200 days) in 9 seasons. In- 
erannual variability still occurs, but the decreasing trend 
n FDD now applies to both the mean and minimum values. 
he general trends reflected in the above analysis thus con- 
rm the earlier results ( Gerland and Hall, 2006 ; Gerland and 
enner, 2007 ; Pavlova et al., 2019 ). 
Machine learning models have two advantages over the 

bservational mapping of sea ice extents. As noted above, 
uch maps were created using various methods according 
o availability, thus improving with time. By contrast, the 
ccuracy of estimation using a machine learning model is 
onstant, as determined by the evaluation process. Further- 
ore, when accurate data are unavailable, better results 
an be obtained by teaching the model using more accurate 
ontemporary data. In addition, such models can be used for 
orecasting the future fast ice extent, and the performance 
f the model can be evaluated by comparing its predictions 
ith observations in the area of interest (the grid of hexag- 
nal polygons in Figure 2 ). The results of the RF regression 
nd classification models are compared with the Norwegian 
ce Service ice-chart data set and the grid data from the US 
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Figure 8 The time series of fast ice extent for project AOI ( Figure 2 ) according to the data from the ice charts produced by the 
Norwegian Ice Service, the grid data from the US National Snow and Ice Data Center, the random forest classification model results, 
and the random forest regression model results. The ticks mark link each year to the 1 st January of the next year. 
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ational Snow and Ice Data Center in Figure 8 . The compar- 
son is for the time window when both data sources were 
vailable. A significant similarity between these four time 
eries is observed, although some differences between the 
wo observational datasets exist. 
The two main features controlling the model results are 

he FDD and TDD, although the influence of the FDD is 
wice that of the TDD. The machine learning models are 
esigned to make the most accurate predictions possible. 
or example, in the distributed classification model, all lo- 
al factors such as water temperature or circulation are 
ndirectly included when designing the rules for a partic- 
lar model cell. The fast ice extent time series obtained 
sing the regression model is presented in Figure 5 , and the 
lassification model gives nearly identical results ( Figure 8 ). 
he characteristic feature is one of fluctuations in the ice 
xtent that are superimposed onto the long-term trend 
epresented by the 10-year rolling mean (orange line on 
igure 5 ). In the latter, the fast ice extent is seen to de-
rease gradually over time, being halved within the last 
orty years (a rate of about 100 km 

2 per year). This re- 
ult in in agreement with that of Dahlke et al . (2020) , 
ho indicated a decrease of 10—20% per decade in the 
jords. In our study, the analysis of spatial change was 
ade using a cluster of local random forest models; this 

s a new method, but similar solutions have been used 
y others (e.g., Georganos et al . , 2019 ). The present re- 
ults show a significant decline in fast ice ( Figure 6 and 
able 2 ). The coverage of fast ice lasting more than two 
onths was 12,320 km 

2 in 1973—2000, but was halved 
n 2005—2019. Further, according to the forecast, an in- 
rease in temperature by two degrees will decrease the 
wo-month ice coverage four-fold compared to that of 
005—2019. 
The amount of fast ice is not a function of air tem- 

erature only. The surface air temperature can explain 
round 25—26% of the fast ice variability ( Dahlke, et al . , 
543 
020 ). Many factors have smaller or larger impacts locally. 
he increased freshwater input from glaciers may alter the 
jord fast ice persistence. The temperature and salinity of 
he water column also play important roles. For example, 
ongsfjorden is affected by heat transport in the upper wa- 
er column, which may impact the ice loss ( Cottier et al., 
007 ; Sundfjord et al., 2017 ). Also, surface wind stress can 
ause advecting drift ice, and the mechanical destruction 
f the existing fast ice may change its extent ( King et al.,
017 ). The snow cover has also important effects on de- 
elopment of fast ice ( Wang et al., 2015 ). As a result, the
resence of ice is determined by the unique relationship 
etween air temperature and other factors at each local- 
ty. The classification model creates a separate RF model 
or each locality with an accuracy of greater than 80% 

 Figure 3 ). Additionally, the use of air temperature predic- 
ions enables these models to predict the future fast ice 
xtent. 

. Conclusions 

(1) The quality of ice extent data depends on the time of 
its acquisition, with older data being less accurate than 
newer data. However, it is possible to use current ob- 
servations to model the past via machine learning with 
errors that are mostly independent of time. Machine 
learning is also an effective method for modeling the 
near-future extent and spatial distribution of fast ice. 
The modeling uses cumulative freezing degree days, 
thawing degree days, and the total number of days of 
a particular ice season. Due to the statistical nature of 
the modeling process, it is possible to use data from a 
single station if a strong spatial correlation exists. 

(2) The most crucial parameter is the cumulative freezing 
degree days (FDD), with a 60% influence upon the fast 
ice extent and duration. Since 2005, a significant de- 
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crease in the FDD has been observed near Svalbard. 
The changes in air temperature and, hence, the FDD, 
are strongly correlated in space. The FDD has a signifi- 
cant increasing trend from the southwest to the north- 
east, with about 400 days across 100 km. As a result of 
warming, the highest (40%) decrease in FDD per decade 
is observed near Sørkapp. The lowest (10%) decrease is 
observed at northwest Spitsbergen. 

(3) The maximum winter fast ice extent in the fjords and 
coastal waters of Svalbard has oscillated from 5,000 to 
30,000 km 

2 in the last 50 years, with a few-yearly se- 
quence of higher and lower values. The greatest fast 
ice extent occurred during certain years between 1975 
and 1990. 
During the last forty years, the mean ice extent has 
decreased by half at a rate of about 100 km 

2 per year. 
(4) The most crucial changes in ice extent duration, before 

and after 2000, are in the western and northern parts 
of Spitsbergen. The reduction in ice presence is from 1 
to 3 months. An increase in mean air temperature by 
two degrees will reduce the duration of fast ice extent 
by approximately four times compared to the present. 
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