Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 64 |
Tytuł artykułu

Effect of urban pollution on 4-coumarate: CoA ligase and flavonoid accumulation in Berberis thunbergii

Treść / Zawartość
Warianty tytułu
Języki publikacji
Flavonoids are polyphenolic compounds commonly found in plants and they play an important role in stress tolerance. They have the capacity to chelate heavy metals andscavenge free radicals. Urban pollution causes oxidative stress in plants and flavonoids may protect cells against the negative effect of free radicals. In this study levels of anthocyanins andflavonols and4-coumarate:CoA ligase (4CL) activity were determinedin Berberis thunbergii (DC.) plants grown in pollutedandresid ential areas in the city of Poznań. The results showedsignificantly higher accumulation of anthocyanins andstimulation of 4CL activity in plants from the contaminatedsites in comparison to the control plants. Probably the activation of the phenylpropanoidpathway was a response to stress caused by urban pollution.
Opis fizyczny
  • Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
  • Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
  • Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
  • Amic D., Davidovic-Amic D., Beslo D., Trinajstic N. 2003. Structure-radical scavenging activity relationships of flavonoids. Croatica Chemica Acta 76: 55–61.
  • Arakawa O. 1991. Effect of temperature on anthocyanin accumulation in apple fruit as affectedby cultivar, stage of fruit ripening andbagging. The Journal of Horticultural Science andBiotechnology 66: 763–768.
  • Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts andtheir functions. Plant Physiology 141: 391–396.
  • Bialonska D., Zobel A.M., Kuras M., Tykarska T., Sawicka-Kapusta K. 2007. Phenolic compounds and cell structure in bilberry leaves affectedby emissions from a Zn–Pb smelter. Water, Air and Soil Pollution 181: 123–133.
  • Borowski J., Latocha P. 2006. Dobór drzew i krzewów do warunków przyulicznych Warszawy i miast centralnej Polski – Trees andshrubs suitable for street conditions in Warsaw and other cities in central Poland. Rocznik Dendrologiczny 54: 83–93.
  • Bower P.M., Simpson H.J., Williams S.C., Li Y.H. 1978. Trace Heavy metals in the sediments of Foundry Cove, Cold Spring, New York. Environmental Science and Technology 12: 683–687.
  • Bradford M.M., 1976. A rapidandsensitive method for the quantitation of mikrogram quantities of protein utilizing the principle of protein-dye binding. Analitical Biochemistry 72: 248–254.
  • Chadzinikolau T., Kozłowska M., Mleczek M. 2010. Response of Berberis thunbergii (DC.) to heavy metals under urban pollution. Dendrobiology 64: 65–72.
  • Chappelka A., Somers G., Renfro J., SheppardL.J., Cape I.N. 1999. Visible ozone injury on forest trees in Great Smoky Mountains National park, USA. Forest Growth Responses to the Pollution Climate of the 21st Century. Water, Air, and Soil Pollution 116: 255–260.
  • Colvile R.N., Hutchinson E.J., Mindell J.S., Warren R.F. 2001. The transport sector as a source of air pollution. Atmospheric Environment 35: 1537–1565.
  • Conti M.E., Cecchetti G. 2001. Biological monitoring: Lichens as bioindicators of air pollution assessment – A review. Environmental Pollution 114: 471–492.
  • Costa M.A., Bedgar D.L., Moinuddin S.G.A., Kim K.W., Cardenas C.L., Cochrane F.C., Shockey J.M., Helms G.L., Amakura Y., Takahashi H., Milhollan J.K., Davin L.B., Browse J. andLewis N.G. 2005. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin andsina -pate/sinapyl alcohol derivative formation. Phytochemistry 66: 2071–2090.
  • Day T.A., 1993. Relating UV-B radiation screening effectiveness of foliale to absorbing-compound concentration andanatomical characteristis in a diverse group of plants. Oecologia 95: 542–550.
  • Dixon R.A., Paiva N.L. 1995. Stress-induced phenylpropanoidmetabolism. The Plant Cell 7: 1085–1097.
  • Furlan C.M., Santos D.Y.A.C., Motta L.B., Domingos M., Salatino A. 2010. Guava flavonoids and the effect of industrial air pollutants. Atmospheric Pollution Research 1: 30–35.
  • Giertych M.J., Karolewski P. 1993. Changes in phenolic compounds content in needles of Scots pine (Pinus sylvestris L.) seedlings following short term exposition to sulphur dioxide. Arboretum Kórnickie 38: 43–51.
  • Giertych M.J., Karolewski P., De Temmerman L.O. 1999. Foliage age andpollution alter content of phenolic compounds and chemical elements in Pinus nigra needles. Water, Air, and Soil Pollution 110: 363–377.
  • Godefroid S. 2001. Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landscape Urban Planning 52: 203–224.
  • Guan Dong-Sheng andPert M.R. 2006. Heavy metal concentrations in plants and soils at roadside locations andparks of urban Guangzhou. Journal of Environmental Sciences 18: 495–502.
  • Hahlbrock K., Scheel D. 1989. Physiology and molecular biology of phenylpropanoidmetabolism. Annual Review of Plant Physiology andPlant Molecular Biology 40: 347–369.
  • Herrmann K.M., Weaver L.M. 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50: 473–503.
  • Kaczmarek K., Klimaszewski S., Kołaska A., Krysiak D., Mencel M., Pułyk M., Tybiszewska E., Węsierska B. 2009. Raport o stanie środowiska w Wielkopolsce 2008. Wojewódzki Inspektorat Ochrony Środowiska w Poznaniu, 10–38.
  • Karlsson G.P., Pleijel H., SildE., Danielsson H., Sellden G., Ericson L., Skarby L., Grennfelt P., Rohde H., Thornelof E. 1995. Clover Sweden: A national three-year study of the effects of tropospheric ozone on Trifolium subterraneum, L. Water, Air, and Soil Pollution 85: 1503–1508.
  • Karolewski P. 1990. Visible andinvisible injury to scots pine (Pinus sylvestris L.) needles caused by sulphur dioxide. Arboretum Kórnickie 35: 127–136.
  • Karolewski P., Giertych M.J. 1995. Changes in the level of phenols during needle development in Scots pine populations in a control andpolluted environment. European Journal of Forest Pathology 25: 297–306.
  • Knobloch K.H., Hahlbrock K. 1977. 4-Coumarate: CoA ligase from cell suspension of Petroselinum hortense Hoffm. Partial purification, substrate specificity, andfurther properties. Archives of Biochemistry and Biophysics 184: 237–248.
  • Lagerwerff J.V., Specht A.W. 1970. Contamination of roadside soil and vegetation with Cd, Ni, Pb and Zn. Environmental Science andTechnology 4: 583–586.
  • Loponen J., Ossipov V., Lempa B.K., Haukiojab B.E., Pihlaja K. 1998. Concentrations andamong-compound correlations of individual phenolics in white birch leaves under air pollution stress. Chemosphere 37: 1445–1456.
  • Loponen J., Lempa K., Ossipov V., Kozlov M.V., Girs A., Hangasmaa K., Haukioja E., Pihlaja K. 2001. Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere 45: 291–301.
  • Loponen J., Ossipov V., Koricheva J., Haukioja E., Pilhlaja K. 1997. Low molecular mass phenolics in foliage of Betula pubescens Ehrh. in relation to aerial pollution. Chemosphere 34: 687–697.
  • Matysiak R. 2001. Content of carotenoids in needles of Pinus sylvestris L. growing in a pollutedarea. Dendrobiology 46: 39–42.
  • Nikolova M.T., Ivancheva S.V. 2005. Quantitative flavonoidvariations of Artemisia vulgaris L. and Veronica chamaedrys L. in relation to altitude and pollutedenvironment. Acta Biologica Szegediensis 49: 29–32.
  • Oleksyn J., Reich P.B., Karolewski P., Tjoelker M.G., Chalupka W. 1999. Nutritional status of pollen and needles of diverse Pinus sylvestris populations grown at sites with contrasting pollution. Water, Air and Soil Pollution 110: 195–212.
  • Peńuelas J., Estiarte M., Kimball B.A., Idso S.B., Pinter Jr P.J., Wall G.W., Garcia R.L., Hansaker D.J., LaMorte R.L., Hendrix D.L. 1996. Variety of responses of plant phenolic concentration to CO2 enrichment. Journal of Experimental Botany 47: 1463–1467.
  • Pietta P.G. 2000. Flavonoids as Antioxidants. Journal of Natural Products 63: 1035–1042.
  • Pisani J.M., Distel R.A. 1998. Inter andintraspecific variations in production of spines and phenols in Prosopis caldemia and Prosopis flexuosa. Journal of Chemical Ecology 24: 23–36.
  • Qayoom Mir A., Yazdani T., Ahmad S., Yunus M. 2009. Total flavonoids and phenolics in Catharanthus roseus L. and Ocimum sanctum L. as biomarkers of urban auto pollution. Caspian Journal of Environmental Sciences 7: 9–16.
  • Rahman U., Awan M.A., Hassan S.T., Khattak M.M. 2000. Mosses as indicators of atmospheric pollution of trace metals (Cd, Cu, Ph, Mn and Zn) in the vicinity of cold-fired brick kilns in north-eastern suburbs of Islamabad, Pakistan. Journal of Radioanalytical and Nuclear Chemistry 246: 331–336.
  • Rautio P., Huttunen S., Kukkola E., Peura R., Lamppu J. 1998. Depositedparticles, element concentrations andneed les injuries on Scots pines along an industrial pollution transect in northern Europe. Environmental Pollution 103: 81–89.
  • Reeves R.D., Brooks R.R., 1983. Hyperaccumulation of leadandzinc by two metollophytes from mining areas of Central Europe. Environmental Pollution Series A, Ecological andBiological 31: 277–285.
  • Rezende F.M., Furlan C.M. 2009. Anthocyanins and tannins in ozone fumigatedguava trees. Chemosphere 76: 1445–1450.
  • Robles C., Greff S., Pasqualini V., Garzino S., Bousquet -, Mélou A., Fernandez C., Korboulewsky N., Bonin G. 2003. Phenols andflavonoid s in Aleppo pine needles as bioindicators of air pollution. Journal of Environmental Quality 32: 2265–2271.
  • Rossbach M., Jayasekera R., KniewaldG., Thang N.H. 1999. Large scale air monitoring: Lichen vs. air particulate matter analysis. Science of the Total Environment 232: 59–66.
  • Singh N., Yunus M., Srivastava K., Singh S.N., Pandey V., Misra J., AhmadK.J. 1995. Monitiring of auto exhaust pollution by roadsid e plants. Environmental Monitoring and Assessment 34: 13–25.
  • Solomon R.L., HartfordW. 1976. Leadandcad mium in dusts and soils in a small urban community. Environmental Science andTechnology 8: 773–777.
  • Stefova M., Kulevanova S., Stafilov T. 2001. Assay of flavonols andquantification of quercetin in medicinal plants by HPLC with UV-diode array detection. Journal of LiquidChromatography and Related Technologies 24: 2283–2292.
  • Stöckigt J., Zenk M.H. 1975. Chemical synthesis and properties of hydroxycinnamoyl-coenzyme A derivatives. Zeitschrift für Naturforschung C 30: 352–358.
  • Turner D. 2005. Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water, Air, and Soil Pollution 166: 251–264.
  • Van Breusegem F., Dat J.F. 2006. Reactive oxygen species in plant cell death. Plant Physiology 141: 384–390.
  • Vassileva E., Velev V., Daiev C., Stoichev T., Martin M., Robin D., Haerdi W. 2000. Assessment of heavy metals air pollution in urban andind ustrial environments using oak leaves as bioindicators. International Journal of Environmental Analytical Chemistry 78: 159–173.
  • Winkel-Shirley B. 2001. Flavonoidbiosynthesis: a colorful model for genetics, biochemistry, cell biology andbiotechnology. Plant Physiology 126: 485–493.
  • Winkel-Shirley B. 2002. Biosynthesis of flavonoids andeffects of stress. Current Opinion in Plant Biology 5: 218–223.
  • Yun M-S., Chen W., Deng F., Yogo Y. 2007. Propanil andswep inhibit 4-coumarate:CoA ligase activity in vitro. Pest Management Science 63: 815–820.
  • Zobel A., Nighswander J.E. 1991. Accumulation of phenolic compounds in the necrotic areas of Austian andredpine needles after spraying with sulphuric acid: A possible bioindicator of air pollution. New Phytologist 117: 565–574.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.