PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 76 | 4 |

Tytuł artykułu

The possible protective effect of L-arginine against 5-fluorouracil-induced nephrotoxicity in male albino rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
5-fluorouracil (5-FU) is a potent antineoplastic agent used for the treatment of various malignancies. The L-arginine nitric oxide (NO) pathway involved in the pathogenesis of chemotherapy induced kidney damage. This work investigated the beneficial mechanism of L-arginine supplementation in 5-FU induced nephropathy. Eighty male Wistar rats were divided into four equal groups: control group; L-arginine group (378 mg/rat/day for 4 weeks); 5-FU group (189 mg/rat/week for 4 weeks) and L-arginine for 1 week before and 4 weeks concomitant with 5-FU group. At the end of experiment, the kidney functions were assessed and kidneys specimens were processed for paraffin sections and stained with haematoxylin and eosin (H&E), Masson’s trichome (MT) and periodic acid-Schiff (PAS) stains. Other sections were processed for immunohistochemical demonstration of caspase-3 and inducible NO synthase (iNOS). Image analyser was used to analyse the results morphometrically and statistically. L-arginine administration to 5-FU treated animals elicited significant reduction in serum urea and creatinine levels, urine volume, urinary protein excretion and kidney/body weight ratio in comparison to fluorouracil treated group. L-arginine improved glomeruloscelerosis, degeneration of convoluted tubules and interstitial fibrosis in 5-FU treated animals. L-arginine attenuated effectively some biochemical and histological changes in 5-FU nephrotoxicity. (Folia Morphol 2017; 76, 4: 608–619)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

76

Numer

4

Opis fizyczny

p.608-619,fig.,ref.

Twórcy

  • Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
autor
  • Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Anatomy, Faculty of Medicine, Alexandria University, Egypt
autor
  • Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Histology, Faculty of Medicine, Cairo University, Egypt

Bibliografia

  • 1. Abo Zeid, El Saka MH, Shafik NM. Effect of combination of L-arginine and N-acetyl cysteine in rat model of renal ischemia-reperfusion injury. J Am Sci. 2012; 8(10): 814–921, doi: 10.7537/j.issn.1545-1003.
  • 2. Adejuwon A, Femi-Akinlosotu O, Omirinde JO, et al. Launaea taraxacifolia Ameliorates Cisplatin-Induced Hepato-renal Injury. Eur J Med Plants. 2014; 4(5): 528–541, doi: 10.9734/ejmp/2014/7314.
  • 3. Aiello S, Noris M, Todeschini M, et al. Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney Int. 1997; 52(1): 171–181, indexed in Pubmed: 9211360.
  • 4. Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol. 2006; 44(8): 1173–1183, doi: 10.1016/j.fct.2006.01.013, indexed in Pubmed: 16530908.
  • 5. Amore A, Gianoglio B, Ghigo D, et al. A possible role for nitric oxide in modulating the functional cyclosporine toxicity by arginine. Kidney Int. 1995; 47(6): 1507–1514, indexed in Pubmed: 7543959.
  • 6. Ashab I, Peer G, Blum M, et al. Oral administration of L-arginine and captopril in rats prevents chronic renal failure by nitric oxide production. Kidney Int. 1995; 47(6): 1515–1521, indexed in Pubmed: 7643519.
  • 7. Bancroft JD, Cook HC. Immunohistochemical staining by standard avidin-biotin-peroxidase method. In: Bancroft JD, Cook HC. ed. Manual of histological techniques. Churchill, Livingstone 1984: 195–202.
  • 8. Bancroft JD, Gamble M. Theory and practice of histological techniques. 5th ed. Churchill, Livingstone 2001: 173–175.
  • 9. Bank N, Aynedjian HS, Qiu JH, et al. Renal nitric oxide synthases in transgenic sickle cell mice. Kidney Int. 1996; 50(1): 184–189, indexed in Pubmed:8807587.
  • 10. Bidadkosh A, Derakhshanfar A, Rastegar A, et al. Antioxidant preserving effects of l-arginine at reducing the hemodynamic toxicity of gentamicin-induced rat nephrotoxicity: pathological and biochemical findings. Comp Clin Pathol. 2012; 21(6): 1739–1744, doi: 10.1007/s00580-011-1359-4.
  • 11. Braga-Neto MB, Warren CA, Oriá RB, et al. Alanylglutamine and glutamine supplementation improves 5-fluorouracil-induced intestinal epithelium damage in vitro. Dig Dis Sci. 2008; 53(10): 2687–2696, doi: 10.1007/s10620-008-0215-0, indexed in Pubmed: 18320312.
  • 12. Bremer V, Tojo A, Kimura K, et al. Role of nitric oxide in rat nephrotoxic nephritis: comparison between inducible and constitutive nitric oxide synthase. J Am Soc Nephrol. 1997; 8(11): 1712–1721, indexed in Pubmed: 9355074.
  • 13. Cabellos R, Garcia-Carbonero R, Garcia-Lacalle C, et al. Fluorouracil-based chemotherapy in patients with gastrointestinal malignancies: influence of nutritional folate status on toxicity. J Chemother. 2007; 19(6): 744–749, doi: 10.1179/joc.2007.19.6.744, indexed in Pubmed: 18230560.
  • 14. Can C, Sen S, Boztok N, et al. Protective effect of oral L-arginine administration on gentamicin-induced renal failure in rats. Eur J Pharmacol. 2000; 390(3): 327–334, doi: 10.1016/S0014-2999(00)00025-X, indexed in Pubmed: 10708741.
  • 15. Chatterjee PK, Patel NSA, Kvale EO, et al. Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int. 2002; 61(3): 862–871, doi: 10.1046/j.1523-1755.2002.00234.x, indexed in Pubmed: 11849439.
  • 16. Cherla G, Jaimes EA. Role of L-arginine in the pathogenesis and treatment of renal disease. J Nutr. 2004; 134(10 Suppl): 2801S–2806S; discussion 2818S, indexed in Pubmed: 15465789.
  • 17. Coers W, Timens W, Kempinga C, et al. Specificity of antibodies to nitric oxide synthase isoforms in human, guinea pig, rat, and mouse tissues. J Histochem Cytochem. 1998; 46(12): 1385–1392, doi: 10.1177/002215549804601207, indexed in Pubmed: 9815280.
  • 18. Cool JC, Dyer JL, Xian CJ, et al. Pre-treatment with insulinlike growth factor-I partially ameliorates 5-fluorouracilinduced intestinal mucositis in rats. Growth Horm IGF Res. 2005; 15(1): 72–82, doi: 10.1016/j.ghir.2004.12.002, indexed in Pubmed: 15701575.
  • 19. Devlin TM. Text book of biochemistry: with clinical correlation, 4th ed. John Wiley and Sons Inc, New York 1997: 553–560.
  • 20. El-Hoseany NMA. Protective effect of captopril against 5-fluorouracil-induced hepato and nephrotoxicity in male Albino rats. J Am Sci. 2012; 8(2): 680–685, doi: 10.7537/j.issn.1545-1003.
  • 21. El-Sayed eS, Abd-Ellah MF, Attia SM. Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. PakJ. Pharm Sci. 2008; 21(3): 255–261, indexed in Pubmed: 18614421.
  • 22. Fujihara CK, Mattar AL, Vieira JM, et al. Evidence for the existence of two distinct functions for the inducible NO synthase in the rat kidney: effect of aminoguanidine in rats with 5/6 ablation. J Am Soc Nephrol. 2002; 13(9): 2278–2287, doi: 10.1097/01.ASN.0000027354.12330. F4, indexed in Pubmed:12191972.
  • 23. Hayashi T, Matsui-Hirai H, Fukatsu A, et al. Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis. 2006; 187(2): 316–324, doi: 10.1016/j.atherosclerosis.2005.10.023, indexed in Pubmed:16325187.
  • 24. Heeringa P, van Goor H, Moshage H, et al. Expression of iNOS, eNOS, and peroxynitrite-modified proteins in experimental anti-myeloperoxidase associated crescentic glomerulonephritis. Kidney Int. 1998; 53(2): 382–393, doi: 10.1046/j.1523-1755.1998.00780.x, indexed in Pubmed: 9461097.
  • 25. Isaka Y, Rakugi H. Severe adverse effects of 5-fluorouracil in S-1 were lessened by haemodialysis due to elimination of the drug. NDT Plus. 2009; 2(2): 152–154, doi: 10.1093/ndtplus/sfn195, indexed in Pubmed: 25949315.
  • 26. Ito K, Chen J, Vaughan ED, et al. Dietary L-arginine supplementation improves the glomerular filtration rate and renal blood flow after 24 hours of unilateral ureteral obstruction in rats. J Urol. 2004; 171(2 Pt 1): 926–930, doi: 10.1097/01.ju.0000105073.67242.eb, indexed in Pubmed: 14713855.
  • 27. Joles JA, Vos IH, Gröne HJ, et al. Inducible nitric oxide synthase in renal transplantation. Kidney Int. 2002; 61(3): 872–875, doi: 10.1046/j.1523-1755.2002.00235.x, indexed in Pubmed: 11849440.
  • 28. Kakoki M, Kim HS, Arendshorst WJ, et al. L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2004; 287(6): R1478–R1485, doi: 10.1152/ajpregu.00386.2004, indexed in Pubmed: 15319219.
  • 29. Lin Y, Wang LN, Xi YH, et al. L-arginine inhibits isoproterenol-induced cardiac hypertrophy through nitric oxide and polyamine pathways. Basic Clin Pharmacol Toxicol. 2008; 103(2): 124–130, doi: 10.1111/j.1742-7843.2008.00261.x, indexed in Pubmed: 18816294.
  • 30. Ling H, Edelstein C, Gengaro P, et al. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol. 1999; 277(3 Pt 2): F383–F390, indexed in Pubmed: 10484522.
  • 31. Mansour M, Daba MH, Gado A, et al. Protective effect of L-arginine against nephrotoxicity induced by cyclosporine in normal rats. Pharmacol Res. 2002; 45(6): 441–446, doi: 10.1006/phrs.2002.0968, indexed in Pubmed: 12162943.
  • 32. Miller AA, Megson IL, Gray GA. Inducible nitric oxide synthase-derived superoxide contributes to hypereactivity in small mesenteric arteries from a rat model of chronic heart failure. Br J Pharmacol. 2000; 131(1): 29–36, doi: 10.1038/sj.bjp.0703528, indexed in Pubmed: 10960065.
  • 33. Raij L, Baylis C. Glomerular actions of nitric oxide. Kidney Int. 1995; 48(1): 20–32, doi: 10.1038/ki.1995.262, indexed in Pubmed: 7564080.
  • 34. Rashid S, Ali N, Nafees S, et al. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol. 2014; 66: 185–193, doi: 10.1016/j.fct.2014.01.026, indexed in Pubmed: 24486618.
  • 35. Romero F, Rodríguez-Iturbe B, Parra G, et al. Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int. 1999; 55(3): 945–955, doi: 10.1046/j.1523-1755.1999.055003945.x, indexed in Pubmed: 10027931.
  • 36. Rusai K, Fekete A, Szebeni B, et al. Effect of inhibition of neuronal nitric oxide synthase and L-arginine supplementation on renal ischaemia-reperfusion injury and the renal nitric oxide system. Clin Exp Pharmacol Physiol. 2008; 35(10): 1183–1189, doi: 10.1111/j.1440-1681.2008.04976.x, indexed in Pubmed: 18518882.
  • 37. Saleh S, El-Demerdash E. Protective effects of L-arginine against cisplatin-induced renal oxidative stress and toxicity: role of nitric oxide. Basic Clin Pharmacol Toxicol. 2005; 97(2): 91–97, doi: 10.1111/j.1742-7843.2005.pto_114.x, indexed in Pubmed: 15998355.
  • 38. Schneider R, Raff U, Vornberger N, et al. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int. 2003; 64(1): 216–225, doi: 10.1046/j.1523-1755.2003.00063.x, indexed in Pubmed: 12787412.
  • 39. Schramm L, La M, Heidbreder E, et al. L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int. 2002; 61(4): 1423–1432, doi: 10.1046/j.1523-1755.2002.00268.x, indexed in Pubmed: 11918749.
  • 40. Schwartz D, Mendonca M, Schwartz I, et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest. 1997; 100(2): 439–448, doi: 10.1172/JCI119551, indexed in Pubmed:9218522.
  • 41. Sharma SP. Nitric oxide and the kidney. Indian J Nephrol. 2004; 14(3): 77–84.
  • 42. Silverstein RA, González de Valdivia E, Visa N. The incorporation of 5-fluorouracil into RNA affects the ribonucleolytic activity of the exosome subunit Rrp6. Mol Cancer Res. 2011; 9(3): 332–340, doi: 10.1158/1541-7786.MCR-10-0084, indexed in Pubmed: 21289297.
  • 43. Thant AA, Wu Y, Lee J, et al. Role of caspases in 5-FU and selenium-induced growth inhibition of colorectal cancer cells. Anticancer Res. 2008; 28: 3579–3592, indexed in Pubmed: 3771536.
  • 44. Vaziri ND, Ni Z, Wang XQ, et al. Down-regulation of nitric oxide synthase in chronic renal insufficiency: role of excess PTH. Am J Physiol. 1998; 274(4 Pt 2): F642–F649, indexed in Pubmed: 9575886.
  • 45. Xia Y, Roman LJ, Masters BS, et al. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998; 273(35): 22635–22639, doi: 10.1074/jbc.273.35.22635, indexed in Pubmed: 9712892.
  • 46. Xian CJ, Howarth GS, Cool JC, et al. Effects of acute 5-fluorouracil chemotherapy and insulin-like growth factor-I pretreatment on growth plate cartilage and metaphyseal bone in rats. Bone. 2004; 35(3): 739–749, doi: 10.1016/j.bone.2004.04.027, indexed in Pubmed: 15336611.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1c76082a-8909-4658-8a2c-bca8269a33a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.