Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |
Tytuł artykułu

Photosystem II photochemistry and physiological parameters of tree fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
Nitraria retusa and Atriplex halimus (xerohalophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na⁺ and Cl⁻ in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO₂ assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F'v/F'm) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na⁺ and/or Cl⁻ observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.
Słowa kluczowe
Opis fizyczny
  • Laboratorie de Physiologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia
  • Laboratorie de Physiologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia
  • Laboratorie de Physiologie Vegetale, Institut Superieur Agronomique de Chott Meriem (ISA-CM), BP 47, 4042 Chott-Meriem (Sousse), Tunisia
  • Abdelly C, Zid E, Hajji M, Grignon C (1995) Biomass production and nutrition of Medicago species associated to halophytes on the edge of a sebkha in Tunisia. In: Chouk-Allah R, Hamdy A, Malcolm CV (eds) Halophytes and biosaline agriculture. Dekker, New York, pp 313–324
  • Alegre J, Navarrete L, Ceresuela JL, Hornero J (1991) La alfalfa leñosa de Creta (Medicago strasseri, Matthäs. Greuter y Risse) primeros datos acerca de su potencial interés forrajero, XXXI Reunión Científica de la Sociedad Española para el Estudio de los Pastos, Murcia, pp 76-/80
  • Arnon DT (1949) Copper enzyme in isolated chloroplast polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142. doi:10.1016/S0168-9452(98)00116-2
  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326. doi:10.1093/jxb/ern040
  • Bethke P, Drew MC (1992) Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol 99:219–226
  • Boyer JS, Wong SC, Farquhar GD (1997) CO₂ and water vapour exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol 114:185–191
  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–345. doi:10.1007/BF00195657
  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and saltsensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635
  • Cha-um S, Mosaleeyanon K, Supaibulwatana K, Kirdmanee C (2004) Physiological Responses of Thai neem (Azadirachta siamensis Val.) to salt stress for salt-tolerance screening program. Sci Asia 30:17–23. doi:10.2306/scienceasia1513-1874.2004.30.017
  • De Araújo SAM, Silveira JAG, Almeida TD, Rocha IMA, Morais DL, Viégas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. R Bras Eng Agríc Ambiental 10:848–854
  • Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189. doi:10.1023/B:PLSO. 0000037034.47247.67
  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO₂ diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402
  • Delfine S, Alvino A, Villana MC, Loreto F (1999) Restriction to carbon dioxide and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 199:1101–1106. doi:10.1104/ pp.119.3.1101
  • Demmig-Adams B, Adams WWIII (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi:10.1146/annurev.pp.43.060192. 003123
  • Demmig-Adams B, Adams WWIII (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26. doi:10.1016/S1360-1385(96)80019-7
  • Dionisio-Sese ML, Tobita S (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54–58
  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292
  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 22:1554–1561
  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x
  • Giorgio P, Sorrentino G, Caserta P, Tedeschi P (1996) Leaf area development of field-grown sunflower plants irrigated with saline water. Helia 19:17–28
  • Hamada AM, El-Enany AE (1994) Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol Plant 36:75–81. doi:10.1007/ BF02921273
  • Heneidy SZ (1996) Palatability and nutritive value of some common plant species from the Aqaba Gulf area of Sinai, Egypt. J Arid Environ 34:115–123. doi:10.1006/jare.1996.0097
  • Heuvelink E, Bakker M, Stanghellini C (2003) Salinity effects on fruit yield in vegetables crops: a simulation study. Acta Hortic 609:133–140
  • James RA, Rivelli AR, Munns R, Von Caemmerer S (2002) Factors affecting CO₂ assimilation, leaf injury and growth in saltstressed durum wheat. Funct Plant Biol 29:1393–1403. doi: 10.1071/FP02069
  • Jamil M, Rha ES (2004) The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Korean J Plant Res 7:226–232
  • Jea Y, Gray VM (2004) Interrelationships between nitrogen supply and photosynthetic parameters in Vicia faba L. Phytosynthetica 41:605–610. doi:10.1023/B:PHOT.0000027527.08220.2c
  • Jimenez MS, Gonzalez Rodriguez AM, Morales D, Cid MC, Socorro AR, Caballero M (1997) Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica 33:291–301. doi:10.1023/A:1022176700857
  • Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415–419. doi: 10.1023/B:PHOT.0000015466.22288.23
  • Karambourniotis G (2003) Physiology of plants under stress (in Greek). Embryo publications, Athens
  • Khan MA, Ungar IA, Showalter AM (2000a) Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot (Lond) 85:225–232. doi:10.1006/anbo.1999.1022
  • Khan MA, Ungar IA, Showalter AM (2000b) The effect of salinity on the growth, water status, and ion content of a leaf of a succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J Arid Environ 45:73–84. doi:10.1006/jare.1999.0617
  • Khan MA, Gul B, Weber DJ (2001) Effect of salinity on the growth and ion content of Salicornia rubra. Commun Soil Sci Plant Anal 32:2965–2977. doi:10.1081/CSS-120000975
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525
  • Lawlor DW (2002) Limitation to photosynthesis in water stressed leaves: stomata versus metabolism and the role of ATP. Ann Bot (Lond) 89:871–885. doi:10.1093/aob/mcf110
  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025. 2001.00814.x
  • Le Houerou HN (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of west Asia and North Africa. Arid Soil Res Rehabil 14:101–135. doi:10.1080/089030600263058
  • Lu C, Zhang J (1998) Thermostability of photosystem II is increased in salt-stressed sorghum. Aust J Plant Physiol 25:317–324
  • Lu C, Qiu N, Lu Q (2003) Photoinhibition and the xanthophylls cycle are not enhanced in the salt-acclimated halophyte Artemisia anethifolia. Physiol Plant 118:532–537. doi:10.1034/j.1399-3054.2003.00134.x
  • Luttge U, Smith A (1984) Structural, biophysical, and biochemical aspects of the role of leaves in plant adaptation to salinity and water stress. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley-Interscience, New York, pp 125–150
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence. A practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Mishra SK, Subrahmanyam D, Singhal GS (1991) Interactionship between salt and light stress on the primary process of photosynthesis. J Plant Physiol 138:92–96
  • Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol 158:1173–1181. doi:10.1078/S0176-1617(04)70144-3
  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349. doi:10.1016/j.plantsci.2004.01.016
  • Morant-Manceau A, Pradier E, Tremblin G (2004) Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J Plant Physiol 161:25–33. doi:10.1078/0176-1617-00963
  • Morsy MH (2003) Growth ability of mango cultivars irrigated with saline water. Acta Hortic 609:475–482
  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24. doi:10.1111/j.1365-3040.1993.tb00840.x
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001. 00808.x
  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160 Musyimi DM, Netondo GW, Ouma G (2007a) Effects of salinity on growth and photosynthesis of Avocado seedlings. Int J Bot 1:78–84
  • Musyimi DM, Netondo GW, Ouma G (2007b) Effects of salinity on gas exchange and nutrients uptake in avocados. J Biol Sci 7:496–505
  • Naumann JC, Young DR, Anderson JE (2007) Linking leaf optical properties to physiological responses for stress detection in coastal plant species. Physiol Plant 131:422–433. doi:10.1111/ j.1399-3054.2007.00973.x
  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811
  • Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198. doi:10.1046/j.1365-3040. 1997.d01-139.x
  • Percival DC, Proctor JTA, Privé JP (1998) Gas exchange, stem water potential and leaf orientation of Rubus idaeus L. are influenced by drought stress. J Hortic Sci Biotechnol 73:831–840
  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486. doi:10.1046/j. 1469-8137.2003.00825.x
  • Rao GG, Rao GR (1981) Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity. Indian J Exp Biol 19:768–770
  • Reddy MP, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 20:50–55
  • Redondo-Gomez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque C, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124. doi:10.1111/j.1399-3054.2006.00719.x
  • Rivelli AR, Lovelli S, Perniola M (2002) Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Funct Plant Biol 29:1405–1415. doi:10.1071/PP01086
  • Schindler C, Lichtenthaler HK (1996) Photosynthetic CO₂ assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field-grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412
  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species, Phaseolus vulgaris, L. Planta 164:151–162. doi:10.1007/BF00396077
  • Shabala SI (2002) Screening plants for environmental fitness: chlorophyll fluorescence as a Holy Grail for plant breeders. In: Hemantaranjan A (ed) Advances in plant physiology, vol 5. Scientific Publishers, Jodhpur, pp 287–340
  • Singh AK, Dubey RS (1995) Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica 31:489–499
  • Sudhir P, Pogoryelov D, Kovacs L, Garab G, Murthy S (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485
  • Terashima I, Wong S-C, Osmond CB, Farquhar GD (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29:385–394
  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. doi:10.1038/44842
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.