Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 74 |
Tytuł artykułu

Genotypic variation of Cunninghamia lanceolata revealed by phenotypic traits and SRAP markers

Treść / Zawartość
Warianty tytułu
Języki publikacji
The success of a tree breeding program largely depended on the available genetic variability of the germplasms. Our present study aimed to assess the phenotypic variation and DNA variability using sequence-related amplified polymorphism (SRAP) markers among 50 Cunninghamia lanceolata (Chinese fir) genotypes. Extensive phenotypic variations (p < 0.05 or 0.01) were found for all the growth and wood property traits (height, diameter at breast height, stem volume, and wood basic density, hygroscopicity, heart-wood ratio, tracheid length, tracheid diameter and tracheid length-diameter ratio) with coefficients of variation spanning from 6.8 to 31.3%. At the DNA level, thirty-five SRAP primer combinations produced 498 bands with 89.4% polymorphism across genotypes; moreover, the Nei’s gene diversity was detected to be ranged between 0.204 and 0.373 (mean = 0.279), while the Shannon’s Information Index stretched from 0.324 to 0.555 with an average value of 0.427. Significance (p < 0.01) of the variability of SRAP polymorphism among genotypes was further demonstrated by AMOVA. These results indicated a relatively high level of genetic diversity in genotypes. The SRAP’ dendrogram additionally revealed that these genotypes could be split into 7 clusters with higher discriminating capacity over that of phenotype. Notably, a total of 99 statistically significant (p < 0.05) marker-trait associations related to the growth and wood property traits were identified. These marker-trait associations corresponded to 77 different SRAP markers with R2 (percentage of the phenotypic variation explained by marker) ranging from 8.3 to 26.4%.
Słowa kluczowe
Opis fizyczny
  • Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of Forestry, 510520 Guangzhou, TPeople’s Republic of China,
  • National Engineering Laboratory for Tree Breeding; College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, People’s Republic of China
  • Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of Forestry, 510520 Guangzhou, Tel: +86-20-87033590; Fax: +86-20-87031245; People’s Republic of China
  • National Engineering Laboratory for Tree Breeding; College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, People’s Republic of China
  • Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of Forestry, 510520 Guangzhou, Tel: +86-20-87033590; Fax: +86-20-87031245; People’s Republic of China
  • Agarwal M., Shrivastava N., Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27: 617–631.
  • Baloch F.S., Kurt C., Arioğlu H., Ozkan H. 2010. Assaying of diversity among soybean (Glycin max (L.) Merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turkish Journal of Agriculture and Forestry 34: 285–301.
  • Bian L., Shi J., Zheng R., Chen J., Wu H.X. 2014. Genetic parameters and genotype-environment interactions of Chinese fir (Cunninghamia lanceolata) in Fujian Province. Canadian Journal of Forest Research 44: 582–592.
  • Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635.
  • Budak H., Shearman R.C., Gaussoin R.E., Dweikat I. 2004. Application of sequence-related amplified polymorphism markers for characterization of turfgrass species. HortScience 39: 955–958.
  • Castonguay Y., Cloutier J., Bertrand A., Michaud R., Laberge S. 2010. SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theoretical and Applied Genetics 120: 1611–1619.
  • Collard B.C.Y., Jahufer M.Z.Z., Brouwer J.B., Pang E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196.
  • Cravero V., Martín E., Cointry E. 2007. Genetic diversity in Cynara cardunculus determined by sequence-related amplified polymorphism markers. Journal of the American Society for Horticultural Science 132: 208–212.
  • Dillman C., Bar-Hen A., Guérin D., Charcosset A., Murigneux A. 1997. Comparison of RFLP and morphological distances between maize Zea mays L. inbred lines. Consequences for germplasm protection purposes. Theoretical and Applied Genetics 95: 92–102.
  • Feng F., Chen M., Zhang D., Sui X., Han S. 2009. Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances. African Journal of Biotechnology 8: 1000–1008.
  • Ferriol M., Picó B., Nuez F. 2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics 107: 271–282.
  • Hamrick J.L., Loveless M.D. 1989. The genetic structure of tropical tree populations: associations with reproductive biology. In: The evolutionary ecology of plants. Bock J.H., Linhart Y.B. (eds.). Westview Press, Boulder, pp 129–146.
  • Huang S., Zhou C., Zhu L., Wei L., Shi J., Liu M. 2004. Study on the genetic variation of growth traits and wood properties for Chinese fir half-sib families. Guangxi Zhiwu 24: 535–539 (Chinese with English abstract).
  • Li G., Quiros C.F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103: 455–461.
  • Li M., Shi J., Li F., Gan S. 2007. Molecular characterization of elite genotypes within a second-generation Chinese fir (Cunninghamia lanceolata) breeding population using RAPD markers. Scientia Silvae Sinicae 43: 50–55.
  • Liu K., Muse S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128–2129.
  • Mamunur Rahman M., Hussain A., Syed M.A., Ansari A., Mahmud M.A.A. 2011. Comparison among clustering in multivariate analysis of rice using morphological traits, physiological traits and simple sequence repeat markers. American-Eurasian Journal of Agricultural and Environmental Sciences 11: 876–882.
  • Mwase W.F., Akinnifesi F.K., Stedjec B., Kwapata M.B., Bjørnstad Å. 2010. Genetic diversity within and among Southern African provenances of Uapaca kirkiana müell. Årg using morphological and AFLP markers. New Forests 40: 383–399.
  • Nybom H., Weising K., Rotter B. 2014. DNA fingerprinting in botany: past, present, future. Investigative Genetics 5: 1.
  • Oliveira F.I.C., Bordallo P.N., Castro A.C.R., Correia D. 2013. Genetic diversity of spineless Cereus jamacaru accessions using morphological and molecular markers. Genetics and Molecular Research 12: 4586–4594.
  • Ouyang L., Chen J.H., Zheng R.H., Xu Y., Lin Y.F., Huang J.H., Ye D.Q., Fang Y.H., Shi J.S. 2014. Genetic diversity among the germplasm collections of the Chinese fir in 1st breeding population upon SSR markers. Journal of Nanjing Forestry University (Natural Science Edition) 38: 21–26 (In Chinese with English abstract).
  • Peakall R., Smouse P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.
  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225–238.
  • Prevost A., Wilkinson M.J. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98: 107–112.
  • Rana M.K., Singh V.P., Bhat K.V. 2005. Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genetic Resources and Crop Evolution 52: 989–997.
  • Rana M.K., Arora K., Singh S., Singh A.K. 2013. Multi-locus DNA fingerprinting and genetic diversity in jute (Corchorus spp.) based on sequence-related amplified polymorphism. Journal of Plant Biochemistry and Biotechnology 22: 1–8.
  • Rao N.K. 2004. Plant genetic resources: Advancing conservation and use through biotechnology. African Journal of Biotechnology 3: 136–145.
  • Rohlf J.F. 2000. NTSYSpc: numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, New York, USA.
  • Shi J., Zhen Y., Zheng R.H. 2010. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. Journal of Experimental Botany 61: 2367–2381.
  • Tatikonda L., Wani S.P., Kannan S., Beerelli N., Sreedevi T.K., Hoisington D.A., Devi P., Varshney R.K. 2009. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science 176: 505–513.
  • Uzun A., Yesiloglu T., Aka-Kacar Y., Tuzcu O., Gulsen O. 2009. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Scientia Horticulturae 121: 306–312.
  • Wang X.Q., Yu Y., Li W., Guo H.L., Lin Z.X., Zhang X.L. 2013. Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs. Genetics and Molecular Research 12: 3353–3362.
  • Wen Y., Ueno S., Han W., Tsumura Y. 2013. Development and characterization of 28 polymorphic EST-SSR markers for Cunninghamia lanceolata (Taxodiaceae) based on transcriptome sequences. Silvae Genetica 62: 137–141.
  • Yang Y.L., Ma X.Q., Zhang M.Q. 2009. Molecular polymorphic analysis for different geographic provenances of Chinese fir. Journal of Tropical and Subtropical Botany 17: 183–189 (In Chinese with English abstract).
  • Yeh F.C., Yang R.C., Boyle T. 1999. PopGene: Microsoft Window-based freeware for population genetic analysis, version 1.31. Edmonton: University of Alberta and Center for International Forestry Research.
  • Yu J., Jing Z.B., Cheng J.M. 2014. Genetic diversity and population structure of Stipa bungeana, an endemic species in Loess Plateau of China, revealed using combined ISSR and SRAP markers. Genetics and Molecular Research 13: 1097–1108.
  • Zhao W.G., Fang R.J., Pan Y.L., Yang Y.H., Chung J.W., Il-Min, Chung IIM, Park Y.J. 2009. Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. African Journal of Biotechnology 8: 2604–2610.
  • Zheng H.Q., Liang R.Y., Hu D.H., Wei R.P., Wang R.H., Yan S. 2012. Selection of large-sized Cunninghamia lanceolata superior trees and variation analysis on the major economic traits. Journal of Southwest Forestry University 32: 26–29 (In Chinese with English abstract).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.