PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 4 |
Tytuł artykułu

Prokaryotes from different phylogenetic groups in surface microlayer and subsurface water in a eutrophic lake

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prokaryotes from different phylogenetic groups were studied in surface microlayer (SM, up to 100 μm) and subsurface water (SW – 20 cm) in a eutrophic lake over three months (July, August, and October). The abundance of prokaryotes was determined by epifluorescence microscopy after DAPI staining, and phylogenetic diversity was determined by fluorescence in situ hybridization (FISH) with group-specific, fluorescently labeled oligonucleotide probes. In SW bacteria made up most of the entire community of DAPI-stained microorganisms (54-69%) and in SM bacteria made up only 33-44% of DAPI-stained microorganisms. Archaea corresponded to a small fraction of both bacterioneuston and bacterioplankton. The counts of Archaea and bacteria were significantly higher in SW than in SM. Among all proteobacteria included in the research, γ-proteobacteria represented the most abundant fraction: 42-72% in SM and 39-61% in SW. Statistical analysis revealed that the abundance of γ-proteobacteria is positively correlated with temperature and with dissolved oxygen. β-proteobacteria were the least abundant fraction.
Wydawca
-
Rocznik
Tom
22
Numer
4
Opis fizyczny
p.1023-1030,fig.,ref.
Twórcy
autor
  • Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environment Protection, Nicholaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environment Protection, Nicholaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
Bibliografia
  • 1. RECHE I., PULIDO-VILLENA E., MORALES-BAQUERO R., CASAMAYOR E.O. Does ecosystem size determine aquatic bacterial richnes? Ecology 86, 1715, 2005.
  • 2. AUGET J-C., BARBERAN A., CASAMAYOR E.O. Global ecological patterns in uncultured Archaea. ISME J. 4, 182, 2010.
  • 3. PEARCE D.A. Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by Denaturing Gradient Gel Electrophoresis (DGGE) and Fluorescence in Situ Hybridization (FISH). Microbial Ecol. 46, 92, 2003.
  • 4. COTTRELL M.T., KIRCHMAN D.L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microb. 66, 5116, 2000.
  • 5. EICKHORST T., TIPPKÖTTER R. Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization (FISH) and micropedological methods. Soil Biol. Biochem. 40, 1284, 2008.
  • 6. ANTON J., LLOBET-BROSSA E., RODRIGUEZVALERA F., AMANN R. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1, 517, 1999.
  • 7. MICHAUD L., CARUSO C., MANGANO S., INTERDONATO F., BRUNI V., GIUDICE A.L. Predominance of Flavobacterium, Pseudomonas and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol. Ecol. 82, 391, 2012.
  • 8. LLIRÓS M., GICH F., PLASENCIA A., AUGUET J-C., DARCHAMBEAU F., CASAMAYOR E.O., DESCY J-P., BORREGO C. Vertical Distribution of Ammonia-Oxidizing Crenarchaeota and Methanogens in the Epipelagic Waters of Lake Kivu (Rwanda-Democratic Republic of the Congo). Appl. Environ. Microbiol. 76, 6853, 2010.
  • 9. ALFREIDER, A., PERNTHALER, J., AMANN, R., SATTLER, B., GLÖCKNER F.O., WILLE A., PSENNER R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138, 1996.
  • 10. MAKI J.S. Neuston Microbiology: Life at the Air-Water Interface. In: Encyclopedia of envinonmental Microbiology. Wiley Online Library. DOI: 10.1002/0471263397, 2002.
  • 11. WURL O., HOLMES M. The gelatinous nature of the sea- surface microlayer. Mar. Chem. 110, 89, 2008.
  • 12. WURL O., MILLER L., RUTTGERS R., VAGLE S. The distribution and fate of surface-active substances in the sea- surface microlayer and water column. Mar. Chem. 115, 1, 2009.
  • 13. WALCZAK M., DONDERSKI W. Bacterioneuston of water bodies. Post. Mikrobiol. 3, 275, 2005.
  • 14. GARRETT W.P. Collection of slick-forming materials from the sea surface. Limnol. Oceanogr. 10, 602, 1965.
  • 15. EGLI K., BOSSHARD F., WERLEN C., LAIS P., SIEGRIST H., ZEHNDER A.J.B, MEERI J.R. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organ­ic carbon. Microb. Ecol. 45, 419, 2003.
  • 16. MANZ W., AMANN R., LUDWIG W., WAGNER M., SCHLEIFER K-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593, 1992.
  • 17. STAHL D.A., AMANN R. Development and application of nucleic acid probes. In: Stackebrandt, E., Goodfellow, M. (Ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, UK, pp 205-248, 1991.
  • 18. WALLNER G., AMANN R., BEISKER W. Optimizing flu­orescent in situ hybridization with rRNA-targeted oligonu- cleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136, 1993.
  • 19. AMANN R., LUDWIG W., SCHLEIFER K.H. Phylogenetic identification and in situ detection of individ­ual microbial cells without cultivation. Microbiol. Rev. 59, 143, 1995.
  • 20. PORTER K.G., FEIG Y.S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943, 1980.
  • 21. SANTOS A.L., MENDES C., GOMES N.C.M., HEN- RIQUES I., CORREIA A., ALMEIDA A., CUNHA A. Short-term variability of abundance, diversity and activity of estuarine bacterioneuston and bacterioplankton. J. Plankton Res. 31, 1545, 2009.
  • 22. ZWIRGLMAIER K., LUDWIG W., SCHLEIFER K. Improved fluorescence in situ hybridization of individual microbial cells using polynucleotide probes: the network hypothesis. System. Appl. Microbiol. 26, 327, 2003.
  • 23. ZWISLER W., SELJE N., SIMON M. Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake. Aquat. Microbial. Ecol. 31, 211, 2003.
  • 24. DONDERSKI W., WALCZAK M., MUDRYK Z., KOBYLIŃSKI M. Neustonic Bacteria Number, Biomass and Taxonomy. Pol. J. Environ. Stud. 8, 137, 1999.
  • 25. DONDERSKI W., WALCZAK M., MUDRYK Z. Neustonic Bacteria of Lake Jeziorak Mały. Pol. J. Environ. Stud. 7, 125, 1998.
  • 26. MAKI J., HERWIG R. A diel study of the neuston and plankton bacteria in an Antarctic pond. Antarc. Sci. 3, 47, 1991.
  • 27. GEORGE A.L., MURRAY A.W., MONTIEL P.O. Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation. FEMS Microbiol. Ecol. 37, 91, 2001.
  • 28. STOLLE CH., LABRENZ M., MEESKE CH., JÜRGENS K. Bacterioneuston Community Structure in the Southern Baltic Sea and Its Dependence on Meteorological Conditions. Appl. Environ. Microb. 77, 3726, 2011.
  • 29. SCULLY N.M., COOPER W.J., TRANVIK L.J. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dis­solved organic matter. FEMS Microbiol. Ecol. 43, 353, 2003.
  • 30. HERNDL G.J., BRUGGER A., HAGER S., KAISER E., OBERNOSTERER I., REITNER B., SLEZAK D. Role of utraviolet-B radiation on bacterioplankton and availability of dissolved organic matter. Vegetat. 128, 43, 1997.
  • 31. HUDSON N., BAKER A., REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - a revive. River. Res. Applic. 23, 631, 2007.
  • 32. BASTIDAS NAVARRO M., E. BALSEIRO E., MODE- NUTTI B. Effect of UVR on Lake Water and Macrophyte Leachates in Shallow Andean-Patagonian Lakes: Bacterial Response to Changes in Optical Features. Photochem. Photobiol. 85, 332, 2009.
  • 33. WALCZAK M. Influence of solar radiation and UVB on activity of intra- and extracellular enzymes from neustonic bacteria. Acta. Agr. Silv. XLIX, 45, 2006 [In Polish].
  • 34. GLÖCKNER F.O., FUCHS B.M., AMANN R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microb. 65, 3721, 1999.
  • 35. SIMEK K., PERNTHALER J., WEINBAUER M., HORNAK K., DOLAN J., NEDOMA J., MASIN M., AMANN R. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67, 2723, 2001.
  • 36. CALLIERI C., CORNO G., CARAVATI E., RASCONI S., CONTESINI M., BERTONI R. Bacteria, Archaea and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol. 75, 7298, 2009.
  • 37. CHRÓST R.J., FAUST M.A. Consequences of solar radia­tion on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America). AME 20, 39, 1999.
  • 38. SKÓRCZEWSKI P., MUDRYK Z. Dynamice of daily changes to the number and production of estuarine bacteri- oneuston and bacterioplankton. AUMC Limnol. Pap., 13, 49 55, 2003.
  • 39. WALCZAK M. Day-to-night activity of bacteria in the sur­face microlayer of eutrophic lake. Pol. J. Ecol. 56, 379, 2008.
  • 40. HÖRTNAGL P., PEREZ T., SOMMARUGA R. Living at the border: A community and single-cell assessment of lake bacterioneuston activity. Limnol. Oceanogr, 55, 1134, 2010.
  • 41. YE W., LIU X., LIN S., TAN J., PAN J., LI D., YANG H. The vertical distribution of bacterial and archaeal communi­ties in the waterand sedimentof LakeTaihu. FEMS 52 Microbiol. Ecol. 70, 263, 2009.
  • 42. PERNTHALER J., GLÖCKNER F.O., UNTERHOLZNER S., ALFREIDER A., PSENNER R., AMANN R. Seasonal community and population dynamics of pelagic Bacteria and Archaea in a high mountain lake. Appl. Environ. 53 Microbiol. 64, 4299, 1998.
  • 43. URBACH E., VERGIN K.L., GARY L. LARSON G.L., STEPHEN J. GIOVANNONI S.J. Bacterioplankton com­munities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water popula- 54 tions. Hydrobiologia 574, 161, 2007.
  • 44. HERNDL G.J., REINTHALER T., EVA TEIRA E., AKEN H., VETH C., PERNTHALER A., PERNTHALER J. Contribution of Archaea to Total Prokaryotic Production in 55 the Deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303, 2005.
  • 45. TEIRA E., LEBARON P., AKEN H., HERNDL G.J. Distribution and Activity of Bacteria and Archaea in the Deep Water Masses of the North Atlantic. Limnol. Oceanogr. 51, 2131, 2006. 56
  • 46. ZWART G., CRUMP B.C., KAMST-VAN AGTERVELD M.P., HAGEN F., HAN S-K. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plank- 57 ton of lakes and rivers. AME 28, 141, 2002.
  • 47. HÖFLE M.G., HAAS H., DOMINIK K. Seasonal dynamics of bacterioplankton community structure in a eutrophic lake 58 as determined by 5S rRNA analysis. Appl. Environ. Microbiol. 65, 3164, 1999.
  • 48. SCHWEIZER B., HUBER I., AMANN R., LUDWIG W., SIMON M. a- and ß-proteobacteria control the consump­tion and release of amino acids on lake snow aggregates. Appl. Environ. Microbiol. 67, 632, 2001.
  • 49. PÉREZ M., SOMMARUGA R. Differential effect of algal - and soil - derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol. Oceanogr., 51, 2527, 2006.
  • 50. NELSON C.E. Phenology of high-elevation pelagic bacte­ria: The roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. ISMEJ 3, 13, 2009.
  • 51. OLAPADE O.A., LEFF L.G. Seasonal dynamics of bacter­ial assemblages in epilithic biofilms in a northeastern Ohio stream. J. North Am. Benthol. Soc. 23, 686, 2004.
  • 52. ARAYA R., TANI K., TAKAGI T., YAMAGUCHI N., NASU M. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43, 111, 2003.
  • 53. MANZ W., WENDT-POTTHOFF K., NEU T.R., SZEW­CZYK U., LAWRENCE J.R. Phylogenetic composition, spatial structure and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confo- cal laser scanning microscopy. Microb. Ecol. 37, 225, 1999.
  • 54. WALCZAK M., ŚWIONTEK BRZEZIŃSKA M. Phylogenetic diversity and abundance of bacteria from sur­face microlayer and subsurface water in eutrophic lake. Pol. J. Ecol., 58, 177, 2010.
  • 55. GUCHT K., VANDEKERECKHOVE T., VLOEMANS N., COUSIN S., MUYLAERT K., SABBE K., GILLIS M., DECLERK S., DE MEESTER L., VYVERMAN W. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microb. Ecol. 53, 205, 2005.
  • 56. KNOLL S., ZWISLER W., SIMON M. Bacterial coloniza­tion of early stages of limnetic diatom microaggregates. Aquatic Microbial. Ecol. 25, 141, 2001.
  • 57. LANGENHEDER S., JÜRGENS K. Regulation of bacteri­al biomass and community structure by metazoan and pro­tozoan predation. Limnol. Oceanogr. 46, 121, 2001.
  • 58. ALONSO-SAEZ L., GASOL J.M., LEFORT T., HOFER J., SOMMARUGA R. Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern mediterranean coastal waters. Appl. Envir. Microb., 72, 5806, 2006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1c1c746e-3c52-4b3f-a81b-c69e79e16ef7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.