Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 73 | 4 |

Tytuł artykułu

Correlation between dopaminergic phenotype and expression of calretinin in the midbrain nuclei of the opossum (Monodelphis domestica): An immunohistological study

Warianty tytułu

Języki publikacji



We investigated distribution and morphology of neurons of the midbrain nuclei: the ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray (PAG) of the adult grey short-tailed opossums that were double immunolabeled for the presence of calretinin (CR) and/or tyrosine hydroxylase (TH). The majority of TH-immunopositive neurons and fibers were located in the VTA, SN, and only scarce population of small neurons expressing TH was present in the PAG. In the SN 80% of TH-expressing neurons had large cell bodies, and only a small fraction had small perikarya. In the PAG populations of large and medium sized neurons were equal and 20% of neurons had small perikarya. Much scarcer population of TH-immunoreactive neurons in the PAG consisted of large or small neurons in its dorsal part (PAGd) and almost exclusively small neurons in the ventral part (PAGv). Distribution of neurons expressing TH and their types in the opossum are similar to those in rodents. The majority of CR-immunolabeled neurons were found in the VTA. In its subdivision, the parabrachal pigmented nucleus (PBP) cells expressing CR were approximately 28% more numerous than cells expressing TH. In spite of that, only 42% of TH-expressing neurons coexpressed CR. The high degree of colocalization TH and CR was observed in the SN. We propose that a higher percentage of TH/CR colocalization, which is observed in the opossums SN, may give them the ability to adapt to changes in their motor functions.








Opis fizyczny



  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Institute of Health Sciences, Pomeranian University of Slupsk, Slupsk, Poland
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
  • Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland


  • Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic com- partmentalization. Brain Res Dev Brain Res 103: 9-20.
  • Atherton JF, Bevan MD (2005) Ionic mechanisms underly¬ing autonomous action potential eneration in the somata and dendrites of GABAergic substantia nigra pars reticu¬lata neurons in vitro. J Neurosci 25: 8272-8281 .
  • Bastianelli E (2003) Distribution of calcium-binding pro¬teins in the cerebellum. Cerebellum 2: 242-262.
  • Bezprozvanny I (2009) Calcium signaling and neurodegen- erative diseases. Trends Mol Med 15: 89-100.
  • Billing-Marczak K, Kuznicki J (1999) Calretinin - sensor or buffer - function still unclear. Pol J Pharmacol 51: 173-178.
  • Blaszczyk JW, Turlejski K (2005) Acoustic startle response in the opossum Monodelphis domestica in comparison with the Wistar albino rat. Acta Neurobiol Exp (Wars) 65: 201-204.
  • Burgoyne RD (2007) Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8: 182-193.
  • Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein par- valbumin in short-term synaptic plasticity. Proc Natl Acad Sci U S A 97: 13372-13377.
  • Camp AJ, Wijesinghe R (2006) Calretinin: Modulator of neuronal excitability. The Int J Biochem Cell Biol 41: 2118-2121.
  • Carr DB, Sesack SR (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38: 114-123.
  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375-475.
  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293: 300¬302.
  • DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neo- cortex. J Chem Neuroanat 14: 1-19.
  • Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3: 786-790.
  • Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5: 311.
  • Fortin M, Parent A (1996) Calretinin as a marker of specific neuronal subsets in primate substantia nigra and subtha¬lamic nucleus. Brain Res 708: 201-204.
  • Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B, et al. (2003) Altered neuronal
  • excitability in cerebellar granule cells of mice lacking calre¬tinin. J Neurosci 23: 9320-9327.
  • Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium-bind¬ing protein immunoreactivity in the rat central nervous system. Brain Res 296: 75-86.
  • González-Hernández T, Rodríguez M. (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421: 107-135.
  • Grace A, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4: 2866-2876.
  • Grace A, Bunney BS (1984b) The control of firing pattern in the nigral dopamine neurons: Burst firing. J Neurosci 4: 2877-2890.
  • Heizmann CW, Braun K (1992) Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci 15: 259-264.
  • Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M (1984) Distribution maps of tyrosine hydroxylase immunoreactive neurons in the rat brain. In: Handbook of Chemical Neuroanatomy (Bjorklund, Hokfelt T, Eds) Vol 2, Part I. Elsevier, Amsterdam, NL. p. 277-379.
  • Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114: 475-492.
  • Isaacs KR, Jacobowitz DM (1994) Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Exp Brain Res 99: 34-42.
  • Klejbor I, Ludkiewicz B, Domaradzka-Pytel B, Spodnik JH, Dziewiatkowski J, Morys J (2006) Influence of the „open field" exposure on calbindin-D28k, calretinin, and par- valbumin containing cells in the rat midbrain - Developmental study. J Physiol Pharmacol 57: 149-164.
  • Klejbor I, Turlejski K (2012) Different strategies of explora¬tion and phenotypic variability of the locomotor behavior in new environment: Comparative study of the laboratory opossum (Monodelphis domestica) and Wistar rat (Rattus norvegicus). Acta Neurobiol Exp (Wars) 72: 452-460.
  • Lee CR, Tepper JM (2007) Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra. J Comp Neurol 500: 958-972.
  • Li C, Ullrich B, Zhang JZ, Anderson RGW, Brose N, Sudhof TC (1995) Ca2+ -dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375: 594¬599.
  • Liang CL, Sinton CM, German DC (1996) Midbrain dop¬aminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 75: 523¬533.
  • Mattson MR (2007) Calcium and neurodegeneration. Aging Cell 6: 337-350.
  • McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364: 121-150.
  • Nair-Roberts RG, Chatelain-Badie SD, Benson E, White- Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152: 1024-1031.
  • Nâgerl UV, Mody I, Jeub M, Lie AA, Elger CE, Beck H (2000) Surviving granule cells of the sclerotic human hip¬pocampus have reduced Ca2+ influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J Neurosci 20: 1831-1836.
  • Palczewska M, Groves P, Ambrus A, Kaleta A, Kover KE, Batta G, Kuznicki J (2001) Structural and biochemical char-acterization of neuronal calretinin domain I-II (residues 1-100). Comparison to homologous calbindin D28k domain I-II (residues 1-93). Eur J Biochem 268: 6229-6237.
  • Parent A, Fortin M, Coté P, Cicchetti F (1996) Calcium- binding proteins in primate basal ganglia. Neurosci Res 25: 309-334.
  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46: 101-134.
  • Rintoul GL, Raymond LA, Baimbridge KG (2001) Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium 29: 277-287.
  • Rogers JH (1992) Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 587: 203-210.
  • Schwaller B (2009) The continuing disappearance of "pure" Ca2+ buffers. Cell Mol Life Sci 66: 275-300.
  • Schwaller B, Meyer M and Schiffmann S (2002) 'New' functions for 'old' proteins: The role of the calciumbind- ing proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1: 241-258.
  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74: 1-58.
  • Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vul¬nerability in Parkinson's disease. Cell Calcium 47: 175-182.
  • Todkar K, Scotti AL, Schwaller B (2012) Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis. Front Mol Neurosci 5: 56.
  • Tzschentke TM (2001) Pharmacology and behavioral phar¬macology of the mesocortical dopamine system. Prog Neurobiol 63: 241-320.
  • Wesierska M, Walasek G, Kilijanek J, Djavadian RL, Turlejski K (2003) Behavior of the gray short-tailed opossum (Monodelphis domestica) in the open field and in response to a new object, in comparison with the rat. Behav Brain Res 143: 31-40.
  • Zhou FW, Xu JJ, Zhao Y, LeDoux MS, Zhou FM (2006) Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J Neurophysiol 96: 1581-1591.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.