PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 59 | 1 |
Tytuł artykułu

Acetic acid bacteria - perspectives of application in biotechnology - a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most commonly recognized and utilized characteristics of acetic acid bacteria is their capacity for oxidizing ethanol to acetic acid. Those microorganisms are a source of other valuable compounds, including among others cellulose, gluconic acid and dihydroxyacetone. A number of inves­tigations have recently been conducted into the optimization of the process of glycerol biotransformation into dihydroxyacetone (DHA) with the use of acetic acid bacteria of the species Gluconobacter and Acetobacter. DHA is observed to be increasingly employed in dermatology, medicine and cosmetics. The manuscript addresses pathways of synthesis of that compound and an overview of methods that enable increasing the effectiveness of glycerol transformation into dihydroxyacetone.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
59
Numer
1
Opis fizyczny
p.17-23,ref.
Twórcy
autor
  • Department of Food Biotechnology and Microbiology, Warsaw University of Life Science, Nowoursynowska 159C/32, 02-787 Warsaw, Poland
autor
Bibliografia
  • 1. Allgeier R.J., Hildebrandt F.M., Newer developments in vinegar manufacture. Adv. Appl. Microbiol., 1960, 2, 163–182.
  • 2. Asai T., Acetic Acid Bacteria: Classification and Biochemical Activities. 1968, University of Tokyo Press, Tokyo, pp.27–67.
  • 3. Bauer R., Katsikis N., Varga S., Hekmat D., Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Biopr. Biosyst. Eng., 2005, 28, 37–43.
  • 4. Brenner D.J., Krieg N.R., Staley J.T., Bergey’s Manual of Systematic Bacteriology. 2005, Sec. Ed. vol. 2 (ed. G.M. Garrity). Springer, New York, pp. 41–79.
  • 5. Chao Y., Ishida T., Sugano Y., Shoda M., Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol. Bioeng., 2000, 68, 345–352.
  • 6. Charney W., Montclair N.J., Process for the production of dihydroxyacetone. USA, patent No 4076589, 1978.
  • 7. Claret C., Bories A., Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol., 1994, 41, 359–365.
  • 8. Claret C., Bories A., Soucaille P., Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Current Microbiol., 1992, 25, 149–155.
  • 9. Czaja W.K., Young D.J., Kawecki M., Brown R.M. Jr., The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8, 1–12.
  • 10. De Muynck C., Pereira C.S.S., Naessens M., Parmentier S., Soetaert W., Vandamme E.J., The genus Gluconobacter oxydans: Comprehensive overview of biochemistry and biotechnological applications. Crit. Rev. Biotechnol., 2007, 27, 147–171.
  • 11. Dellaglid F., Cleenwerck I., Felis G.E., Engelbeen K., Janssens D., Marzotto M., Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isollated from Italian apple fruit. Int. J. Syst. Evol. Microbiol., 2005, 55, 2365–2370.
  • 12. Deppenmeier U., Hoffmeister M., Prust C., Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol., 2002, 60, 233–242.
  • 13. Draelos M.D., Zoe D., Self-Tanning Lotions: Are they a healthy way to achieve a tan?. Am. J. Clin. Dermatol., 2002, 3, 317–318.
  • 14. Draughon F.A., Ayres J.C., Insecticide inhibition of growth and patulin production in Penicillium expansum, Penicillium urticae, Aspergillus clavatus, Aspergillus terreus and Byssochlamis nivea. J. Argic. Food Chem., 1980, 28, 115–117.
  • 15. Durand M., Method for the protection of dihydroxyacetone, a dihydroxyacetone protected by this method and cosmetic product containing such a protected dihydroxyacetone. USA, patent No 5458872, 1995.
  • 16. Elferinck S.J., Driehuis F., Becker P.M., Gottschal J.C., Faber F., Spoelstra S.F., The presence of Acetobacter sp. in ensiled forage crops and ensiled industrial byproducts. Meded Rijksuniv. Gent. Fak. Landbouwkd Toegep Biol. Wet., 2001, 66, 427–430.
  • 17. Embuscado M., Marks J., Miller J., Bacterial cellulose. I. Factors affecting the production of Acetobacter xylinum. Food Hydrocoll., 1994a, 5, 407–418.
  • 18. Embuscado M., Marks J., Miller J., Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum thru response surface methodology. Food Hydrocoll., 1994b, 5, 419––430.
  • 19. Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U., Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell. Mol. Life Sci., 2006, 63, 890–900.
  • 20. Fakley M.E., Lindsay R.J., Isolation process. USA, patent No 4775448, 1988.
  • 21. Fesq H., Brockow K., Storm, Mempel M., Ring J., Abeck D., Dihydroxyacetone in a new formulation – a powerful therapeutic option in vitiligo. Dermatpl., 2001, 203, 241–243.
  • 22. Flickinger M.C., Perlman D., Application of Oxygen-Enriched Areation in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Env. Microbiol., 1977, 33, 706–712.
  • 23. Gätgens C., Degner U., Bringer-Meyer S., Herrmann U., Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol., 2007, 76, 553–559.
  • 24. Gehrer E., Harder W., Vogel H., Knuth B., Ebeln K., Groening C., Preparation of dihydroxyacetone. USA, patent No 5410089, 1995.
  • 25. Green S.R., Whalen E.A., Molokie E., Dihydroxyacetone: Production and uses. J. Biochem. Microbiol. Technol., 2004, 3, 351––355.
  • 26. Greenberg D.E., Porcella S.F., Zelazny A.M., Virtaneva K., Sturdevant D.E., Kupko J.J. 3rd, Barbian K.D., Babar A., Dorwaed D.W., Holland S.M., Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J. Bacteriol., 2007, 189, 8727–8736.
  • 27. Gullo M., Caggia C., De Vero L., Giudici P., Characterization of acetic acid bacteria in traditional balsamic vinegar. Int. J. Food Microbiol., 2006, 106, 209–212.
  • 28. Hancock R.D., Viola R., Biotechnological approaches for L‑‑ascorbic acid production. Trends Biotechnol., 2002, 20, 299––305.
  • 29. Hauge J.G., King T.E., Cheldelin V.H., Alternate conversions of glycerol to dihydroxyacetone in Acetobacter suboxydans. J. Biol. Chem., 1954, 214, 1–9.
  • 30. Hekmat D., Bauer R., Fricke J., Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng., 2003, 26, 109–116.
  • 31. Hommel R.K., Ahnert P., Encyclopedia of Food Microbiology. 2004, vol. 1 (eds. C. Batt, P. Patel, R. Robinson). Elsevier, New York, pp. 1–7.
  • 32. Jia S., Ou H., Chen G., Choi D., Cho K., Okabe M., Cha W.S., Cellulose production from Gluconobacter oxydans TQ-B2. Biot. Bioprocess Eng., 2004, 9, 166–170.
  • 33. Kim S.Y., Kim J.N., Wee Y.J., Park D.H. Ryu H.W., Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl. Biochem. Biotechnol., 1996, 131, 705–715.
  • 34. Majerus P., Kapp K., Assessment of dietary intake of patulin by the population of EV member states. Reports on tasks for scientific cooperation, task 3.2.8. SCOOP report, Brussels, Belgium, 2002, 7–15, [www.ec.europa.eu/food/fs/scoop/3.2.8 en.pdf].
  • 35. Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki T., Sugisawa T., Hoshino T., Adachi O., 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase in Gluconobacter species. Appl. Env. Microbiol., 2003, 69, 1959–1966.
  • 36. McCook J.P., Gordon P.J., Woodward D.C., Sunless tanning products and processes. USA, patent No 6706257, 2004.
  • 37. Mehnaz S., Weselowski B., Lazarovits G., Isolation and identification of Gluconobacter azotocaptans from corn rhizosphere. Syst. Appl. Microbiol., 2006, 29, 496–501.
  • 38. Moake M.M., Padilla-Zakour O.I., Worobo R.W., Comprehensive review of patulin control methods in foods. Comp. Rev. Food Sci. Food Safety, 2005, 1, 8–21.
  • 39. Nabe K., Izuo N., Yamada S., Chibata I., Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Enviro. Microbiol., 1979, 38, 1056–1060.
  • 40. Ndoye B., Cleenwerck I., Engelbeen K., Dubois-Dauphin R., Guiro A.I., Van Trappen S., Willems A., Thonart P., Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub Saharan Africa) from mango fruit (Mangifera inolica L.). Int. J. Syst. Evol. Microbiol, 2007, 57, 1576–1581.
  • 41. Northolt M.D., Van Egmond H.P., Paulsch W.E., Patulin production by some fungal species in relation to water activity and temperature. J. Food Prot., 1979, 41, 885–890.
  • 42. Ohrem H.L., Haftung B., Microbial process fort he preparation of dihydroxyacetone with recycling of biomas. USA, patent No 5770411, 1998.
  • 43. Pedraza R.O., Recent advances in nitrogen-fixing acetic acid bacteria. Int. J. Food Microbiol., 2007, 125, 25–35.
  • 44. Piemontese L., Solfrizzo M., Visconti A., Occurrence of patulin in conventional and organic fruit products in Italy and subsequent exposure assessment. Food Addit. Contam., 2005, 22, 437–442.
  • 45. Pittet A., Natural occurrence of mycotoxins in food and feeds: an updated review. 1998, (ed. J.L. Bars, P. Galtier), Mycotoxins in the food chain: processing and toxicological aspects. Revue de Medecine Veterinaire, Toulouse, France, pp.479–492.
  • 46. Prieto C., Jara C., Mas A., Romero J., Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. Int. J. Food Microbiot., 2007, 115, 348–355.
  • 47. Rabinowitch I.M., Observations on the use of dihydroxyacetone in the treatment of diabetes mellitus (preliminary report). Can. Med. Assoc. J., 1925, 15, 374–281.
  • 48. Raška J., Skopal F., Komers K., Machek J., Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun., 2007, 72, 1269–1283.
  • 49. Ricelli A., Baruzzi F., Solfrizzo M., Morea M., Fanizzi F.P., Biotransformation of patulin by Gluconobacter oxydans. Appl. Environ. Microbiol., 2007, 73, 785–792.
  • 50. Ruiz A., Poblet M., Mas A., Guillamon J.M., Identification of acetic acid bacteria by RFLP of PCR-amplified 16s rDNA and 16s-23s DNA intergenic spacer. Int. J. Evol. Microbiol., 2000, 50, 1981–1987.
  • 51. Seearunruangchai A., Tanasupawat S., Keeratipibul S., Thawai C., Itoh I., Yamada Y., Identification of acetic acid bacteria isolated from fruits collected in Thailand. J. Gen. Appl. Microbiol., 2004, 50, 47–53.
  • 52. Sekiguchi J., Shimamoto T., Yamada Y., Gaucher G.M., Patulin biosynthesis: enzymatic and nonenzymatic transformations of the mycotoxin (E) – ascladiol. Appl. Environ. Microbiol., 1983, 45, 1939–1942.
  • 53. Shah J., Brown R.M. Jr., Towards electronic paper displays made from microbial cellulose. Appl. Microbiol Biotechnol., 2005, 66, 352–355.
  • 54. Silva L.R., Cleenwerck I., Rivas R., Swings J., Trujillo M.E., Willems A., Velázquez E., Acetobacter oeni sp. nov., isolated from spoiled red wine. Int. J. Syst. Evol. Microbiol., 2006, 56, 21–24.
  • 55. Tabuchi M., Baba Y., Design for DNA separation medium using bacterial cellulose fibrils. Anal. Chem., 2005, 77, 7090–7093.
  • 56. Wei S., Song Q., Wei D., Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol., 2007a, 37, 67–76.
  • 57. Wei S., Song Q., Wei D., Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol., 2007b, 37, 113–121.
  • 58. Wittgenstein E., Berry K.H., Reaction of dihydroxyacetone (DHA) with human skin callus and amino compounds. J. Invest. Dermatol., 1961, 36, 283–286.
  • 59. Wittgenstein E., Guest G.M., Biochemical effects of dihydroxyacetone. J. Invest. Dermatol., 1961, 37, 421–426.
  • 60. Yamada Y., Yukphan P., Genera and species in acetic acid bacteria. Int. J. Food Microbiol., 2007, 125, 15–24.
  • 61. Zhou L.L., Sun D.P., Hu L.Y., Li Y.W., Yang J.Z., Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol., 2007, 34, 483–489.
  • 62. [www.cfsan.fda.gov].
  • 63. [www.iupac.org].
  • 64. [www.ncbi.nlm.nih.gov/Taxonomy].
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1bb855d7-e9d2-412b-85f4-e35fea10d00f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.