Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 2 |
Tytuł artykułu

Neuropharmacoogical approach against MPTP (1-methyl-4phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of Parkinson's disease

Treść / Zawartość
Warianty tytułu
Języki publikacji
Parkinson's disease (PD) is a common neurodegenerative disease that appears essentially as a sporadic condition. PD is well known to be a chronic and progressive neurodegenerative disease produced by a selective degeneration of dopaminergic neurons in the substantia nigra pars compacta. The main clinical features of PD include tremor, bradykinesia, rigidity and postural instability. Most insights into pathogenesis of PD come from investigations performed in experimental models of PD, especially those produced by neurotoxins. The biochemical and cellular alterations that occur after 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) treatment are remarkably similar to that observed in idiopathic PD. Furthermore, it is well known that acute treatment with MPTP can cause a severe loss of tyrosine hydroxylase and dopamine transporter protein levels and dopamine contents in the striatum of mice, as compared to continuous MPTP treatment. Thus these findings may support the validity of acute MPTP treatment model for unraveling in the neurodegenerative processes in PD. In this review, we discuss the neuroprotective effects of various compounds against neuronal cell loss in an MPTP model of PD. This review may lead to a much better understanding of PD as well as provide novel clues to new targets for therapeutic interventions in PD patients.
Słowa kluczowe
Opis fizyczny
  • Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
  • Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
  • Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
  • Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
  • Agid Y (1991) Parkinson's disease: pathophysiology. Lancet 337:1321-1324.
  • Ahlskog JE, Munenter MD (2001) Frequency of levodopa- related dyskinesia and motor fluctuations as estimated from the cumulative literature. Mov Disord 16: 448­458.
  • Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthas­es. PNAS 93: 14014-14009.
  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch MT, Aged Y (1997) Apoptosis and autophagy in nigral neu­rons of patients with Parkinson's disease. Histol Histopathol 12: 25-31.
  • Aubin N, Curet O, Deffois A, Carter C (1998) Aspirin and salicylate protect against MPTP-induced dopamine deple­tion in mice. J Neurochem 71: 1635-1642.
  • Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann NY Acad Sci 991: 120-131.
  • Berger NA (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 101: 4-15.
  • Bjorklund S, Bocciardi R, Bonardi G, Matera I, Santamaria G, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lenti- virus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886: 82-98.
  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's dis­ease. Prog Neurobiol 65: 135-172.
  • Castagnoli K, Palmer S, Anderson A, Bueters T, Castagnoli N Jr (1997) The neuronal nitric oxide synthase inhibitor 7-nitroindazole also inhibits the monoamine oxidase-B- catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetra- hydropyridine. Chem Res Toxicol 10: 364-368.
  • Chalimoniuk M, Langfort J, Lukacova N, Marsala J (2004) Upregulation of expression and activity guanylyl cyclase in MPTP animals model Parkinson's disease. Biochem Biophys Res Commun 324: 118-126.
  • Chalimoniuk M, Lukacova N, Marsala J, Langfort J (2006) Alterations of the expression and activity of midbrain nitric oxide synthase and soluble guanylyl cyclase in 1 -methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced parkinsonism in mouse. Neuroscience 141: 1033-1046.
  • Chalimoniuk M, Langfort J (2007) The effect of subchronic, intermittent L-DOPA treatment on neuronal nitric oxide synthase and soluble guanylyl cyclase expression and activity in the striatum and midbrain of normal and MPTP-treated mice. Neurochem Int 50: 821-833.
  • Chen LW, Hu HJ, Liu HL, Yung KK, Chan YS (2004) Identification of brain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of 1-methyl-4-phenyl-1,2,3,6-tetraphdropyridine-treated mice. Neuroscience 126: 941-953.
  • Cheng FC, Ni DR, Wu MC, Kuo JS, Chia LG (1998) Glial cell line-derived neurotrophic factor protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced neurotoxicity in C57BL/6 mice. Neurosci Lett 252: 87-90.
  • Cosi C, Colpaert F, Koek W, Degryse A, Marien M (1996) Poly (ADP-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and corti­cal noradrenaline in C57Bl/6 mice. Brain Res 729: 264­269.
  • Cosi C, Marien M (1998) Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy- dropyridine (MPTP): prevention by the poly (ADP- ribose)polymerase inhibitor, benzamide. Brain Res 809: 58-67.
  • Date I, Aoi M, Tomita S, Collins F, Ohtomo T (1998) GDNF administration induces recovery of the nigrostriatal dop­aminergic system both in young and aged parkinsonian mice. Neuroreport 9: 2365-2369.
  • Dauer W, Przedborski S (2003) Parkinson's disease: mecha­nisms and models. Neuron 39: 889-909.
  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase pro­tects against MPTP neurotoxicity in vivo. J Neurochem 74: 2213-2216.
  • Diguet E, Fernagut PO,Wei X, Du Y, Rouland R, Gross C, Bezard E, Tison F (2004) Deleterious effects of minocy­cline in animal models of Parkinson's disease and Huntington's disease. Eur J Neurosci 19: 3266-3276.
  • Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089-1095.
  • Endres M, Wang .Q, Namura S, Waeber C, Moskowitz,MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab17: 1143-1151.
  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. PNAS 95: 8880-8885.
  • Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Forster OJ (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson's disease. Mol Brain Res 63: 62-71.
  • Frim DM, Uhler TA, Galpem WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinum toxicity to dop- aminergic neurons in the rat. PNAS 9: 5104-5108.
  • Garcia de Yebenes J, Yebenes J, Mena MA (2000) Neurotrophic factors in neurodegenerative disorders: model of Parkinson's disease. Neurotox Res 2: 115-137.
  • Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, Poderoso JJ (2000) Overexpression of neu­trophil neuronal nitric oxide synthase in Parkinson's dis­ease. Nitric Oxide 4: 534-539.
  • German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol 26: 507-514.
  • Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendesen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson's disease. Nat Med 9: 589-595.
  • Gluck MR,Youngster SK, Ramsay RR, Singer TP, Nicklas WJ (1994) Studies on the characterization of the inhibi­tory mechanism of 4'-alkylated 1-methyl- 4- phenylpyri- dinium and phenylpyridine analogues in mitochondria and electron transport particles. J Neurochem 63: 655-661.
  • Good PF, Hsu A,Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson's disease. J Neuropathol Exp Neurol 57: 338-342.
  • Grunblatt E, Mandel S, Berkuzki T, Youdim MB (1999) Apomorphine protects against MPTP-induced neurotox- icity in mice. Mov Disord 14: 469-481.
  • Ha HC, Snyder SH (1999) Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96: 13978-13982.
  • Hadjiconstantinou M, Fitkin JG, Dalia A, Neff NH (1991) Epidermal growth factor enhances striatal dopaminergic parameters in the 1-methyl-4-phenyl- 1,2,3,6- tetrahydro- pyridine-treated mouse. J Neurochem 57: 479-482.
  • Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT, Beal MF (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkin- sonism in baboons. Nat Med 2: 1017-1021.
  • Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart sub­mitochondrial particles. Biochem Biophys Res Commun 170: 1049-1055.
  • Hayakawa T, Higuchi Y, Nigami H, Hattori H (1994) Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsiveeffect. Eur J Pharmacol 257: 131-136.
  • Heaton MB, Paiva M, Madorsky I, Shaw G (2003) Ethanol effects on neonatal rat cortex: comparative analyses of neurotrophic factors, apoptosis-related proteins, and oxi- dative processes during vulnerable and resistant periods. Brain Res Dev Brain Res 145: 249-262.
  • Heikkila RE, Hess A, Duvoisin RC (1984a) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydro- pyridine in mice. Science 224: 1451-1453.
  • Heikkila RE, Manzino L, Cabbat ES, Duvosion RC (1984b) Protection against the dopaminergic neurotox- icity of 1-methyl-4-phenyl-1,2,3,6- tetrahydroxypyri- dine by monoamine oxidase inhibitors. Nature 311: 467-469.
  • Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? Ann Neurol 44: 115-120.
  • Huerta C, Sanchez-Ferrero E, Coto E, Blazquez M, Ribacoba R, Guisasola LM, Salvador C, Alvarez V (2007) No asso­ciation between Parkinson's disease and three polymor­phisms in the eNOS, nNOS, and iNOS genes. Neurosci Lett 413: 202-205.
  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72: 355-363.
  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear transloca­tion of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson's disease. PNAS 94: 7531-7536.
  • Ito T, Yamaguchi T, Miyazaki H, Sekine Y, Shimizu M, Ishida S, Yagi K, Kakegawa N, Seino M, Wada T (1982) Pharmacokinetic studies of AD-810, a new antiepileptic compound. Phase I trials. Arzneimittelforschung 32: 1581-1586.
  • Iwashita A, Yamazaki S, Mihara K, Hattori K,Yamamoto H, Ishida J, Matsuoka N, Mutoh S (2004) Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibi­tor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4- (3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1,2,3,6-tetra- hydropyridine model of Parkinson's disease. J Pharmacol Exp Ther 309: 1067-1078.
  • Johannessen JN, Sobotka TJ, Weise VK, Markey SP (1991) Prolonged alterations in canine striatal dopamine metabo­lism following subtoxic doses of 1-methyl-4-phenyl-1- ,2,3,6-tetrahydropyridine (MPTP) and 4'-amino-MPTP are linked to the persistence of pyridinium metabolites. J Neurochem 57: 981-990.
  • Jones RA (1999) Etodolac: An overview of a selective COX-2 inhibitor. Inflammopharmacology 7:269-275.
  • Joniec I, Ciesielska A, Kurkowska I, Przybylkowski A, Czlonkowska A, Czlonkowski A (2009) Age- and sex- differences in the nitric oxide synthase expression and dopamine concentration in the murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1- ,2,3,6-tetrahydropyridine. Brain Res 1261: 1362-1367.
  • Kauer D, Andersen J (2004) Does cellular iron dysregulation play a causative role in Parkinson's disease? Ageing Res Rev 3: 327-343.
  • Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Matthews RT, Rosen BR, Beal MF (1996) NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res 713: 178-185.
  • Kuroiwa H, Yokoyama H, Kimoto H, Kato H, Araki T (2010) Biochemical alterations of the striatum in an MPTP-treated mouse model of Parkinson's disease. Metab Brain Dis 25: 177-183.
  • Kreisler A, Gele P, Wiart JF, Lhermitte M, Destee A, Bordet R (2007) Lipid-lowering drugs in the MPTP mouse model of Parkinson's disease: Fenofibrate has a neuro­protective effect, whereas benzafibrate and HMG-CoA reductase inhibitors do not. Brain Res 1135: 77-84.
  • Lan J, Jiang DH (1997) Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegenera­tion in mice. J Neural Transm 104: 469-481.
  • Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Tuner D, Wooten VG, Elias WJ, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamental glial cell line-derived neurotrophic factor infusion in Parkinson's disease. Ann Neurol 59: 459-466.
  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine- analog synthesis. Science 219: 979-980.
  • Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl- 4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292: 390-394.
  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeration in the MPTP model of Parkinson disease. Nat Med 5: 1403-1409.
  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative disease. Nature 443: 787-795.
  • Ma Y, Dhawan V, Mentis M, Chaly T, Spetsiers PG, Eidelberg D (2002) Parametric mapping of [18F]FPCT binding in early stage Parkinson's disease: a PET study. Synapse 45: 125-133.
  • MacGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the sub- stantia nigra of Parkinson's disease and Alzheimer's dis­ease brains. Neurology 38: 1285-1291.
  • Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A, Poirier GG, Wang ZQ, Dawson TM,
  • Dawson VL (2000) NMDA but not non-NMDA excito- toxicity is mediated by poly (ADP-ribose) polymerase. J Neurosci 20: 8005-8011.
  • Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkin­sonism. Nature 311: 464-467.
  • McElroy SL, Suppes T, Keck JrPE, Black D, Frye MA, Altshuler LL, Nolen WA, Kupka RW, Leverich GS, Walden J, Grunze H, Post RM (2005) Open-label adjunctive zonisamide in the treatment of bipolar dis­orders: a prospective trial. J Clin Psychiatry 66: 617­624.
  • McNaught KS, Belizaire P, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol 179: 38-46.
  • Mukherjee SK, Klaidman LK, Yasharel R, Adams JrJD (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330: 27-34.
  • Murata M (2004) Novel therapeutic effects of the anti-con- vulsant, zonisamide, on Parkinson's disease. Curr Pharm Des 10: 687-693.
  • Murata M, Hasegawa K, Kanazawa I (2007) Zonisamide improves motor function in Parkinson's disease : a ran­domized, double-blind study. Neurology 68: 45-50.
  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm 60: 277-290.
  • Nakajima K, Hida H, Shimano Y, Fujimoto I, Hashitani T, Kumazaki M, Sakurai T, Nishino H (2001) GDNF is a major component of trophic activity in DA-depleted stria- tum for survival and neurite extension of DAergic neu­rons. Brain Res 916: 76-84.
  • Ogawa N, Asanuma M, Miyazaki I, Diaz-Corrales F, Miyoshi K (2005) L-DOPA treatment from the viewpoint of neuroprotection: possible mechanism of specific and progressive dopaminergic neuronal death in Parkinson's disease. J Neurol 252: iv23-iv31.
  • Otto D, Unsicker K (1994) FGF-2 in the MPTP model of Parkinson's disease: effects on astroglial cells. Glia 11: 47-56.
  • Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalo- myelitis by a tetracycline. Ann Neurol 51: 215-223.
  • Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. PNAS 93: 4565-4571.
  • Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL (2003) Limitations of current Parkinson's disease therapy. Ann Neurol 53: S3-S15.
  • Ricaurte GA, Irwin I, Forno LS, DeLanney LE, Langston E, Langston JW (1987) Aging and 1-methyl-4-phenyl-1- ,2,3,6-tetrahydropyridine-induced degeneration of dop­aminergic neurons in the substantia nigra. Brain Res 403: 43-51.
  • Rock D, MacDonald R, Taylor C (1989) Blockade of sus­tained repetitive action potentials in cultured spin al cord neurons by zonisaimde (AD 810, CI 912), a novel anti­convulsant. Epilepsy Res 3: 138-143.
  • Schabitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S (2000) Intravenous brain-de­rived neurotrophic factor reduces infarct size and coun- terregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31: 2212-2217.
  • Schauf C (1987) Zonisamide enhances slow sodium inacti- vation in Myxicola. Brain Res 413: 185-188.
  • Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotox- icity in mice. J Neurochem 64: 936-939.
  • Skaper SD, Floreani M, Negro A, Facci L, Giusti P (1996) Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 70: 1859-1868.
  • Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C (1992) Brain-derived neuotrophic factor protects dop- amine neurons against 6-hydroxydopamine and N-methy- 4-phenylpyridinum ion toxicity: involvement of the glu­tathione system. J Neurochem 59: 99-106.
  • Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: In vitro and in vivo studies in mice. Brain Res 749: 44-52.
  • Sriram K, Miller DB, O'Callaghan P (2006) Minocycline attenuates microglial activation but fails to mitigate stri- atal dopaminergic neurotoxicity: role of tumor necrosis factor. J Neurochem 96: 706-718.
  • Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cor­tex. Epilepsy Res 12: 21-27.
  • Szabo C, Dawson W (1998) Role of poly (ADP-ribose) syn­thetase in inflammation and ischemia-reperfusion. Trends Pharmacol Sci 19: 287-298.
  • Tikka TM, Koistinaho JE (2001) Minocycline provides neu­roprotection against N-methyl-D-aspirate neurotoxicity by inhibiting microglia. J Immunol 166: 7527-7533.
  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191-1206.
  • Tokime T, Nozaki K, Sugino T, Kikuchi H, Hashimoto N, Ueda K (1998) Enhanced poly (ADP-ribosyl)ation after focal ischemia in rat brain. J Cereb Blood Flow Metab 18: 991-997.
  • Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine- induced parkinsonism in monkeys. Neurosurgery 37: 733-739.
  • Wang H, Shimoj M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann NY Acad Sci 991: 132-139.
  • Watanabe T, Yuki S, Egawa M, Nishi H (1994) Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 268: 1597-1604.
  • Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, Lang AE, Rascol O, Ribeiro MJ, Remy P, Poewe WH, Hauser RA, Brooks DJ; REAL-PET Study Group (2003) Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 54: 93-101.
  • Yang L, Sugama S, Chirichigno JW, Gregorio J, Lorenzl S, Shin DH, Browne SE, Shimizu Y, Joh TH, Beal MF, Albers DS (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74: 278-285.
  • Yano R, Yokoyama H, Kuroiwa H, Kato H, Araki T (2009) A novel anti-parkinsonian Agent, Zonisamide, Attenuates MPTP-Induced Neurotoxicity in Mice. J Mol Neurosci 39: 211-219.
  • Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115: 831-842.
  • Yokoyama H, Kuroiwa H, Tsukada T, Uchida H, Kato H, Araki T (2010a) Poly (ADP-ribose) polymerase (PARP) inhibitor can attenuate the neuronal death after MPTP-induced neu­rotoxicity in mice. J Neurosci Res 88: 1522-1536.
  • Yokoyama H, Yano R, Kuroiwa H, Tsukada T, Uchida H, Kato H, Kasahara J, Araki T (2010b) Therapeutic effect of a novel ant-parkinsonian agent zonisamide against MPTP (1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice.Metab Brain Dis 25: 135-143.
  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly (ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259-263.
  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly (ADP-ribose) synthetase in neu­rotoxicity. Science 263: 687-689.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.