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KEYWORDS Abstract A dense bloom of Protoperidinium steinii was observed in the backwaters adjoin-
Protoperidinium ing the western Bay of Bengal, Kalpakkam coast, which might be the first report for the world
steinii; oceans. The brownish-red bloom appeared on 2 October 2019, and it was monitored on alter-
Red tide; nate days up to 14 October. Surface water temperature was about 27.5°C and salinity was <17
Non-toxic HAB; PSU during the bloom. Dissolved inorganic nutrients like nitrate, ammonia, silicate, and phos-
Eutrophication; phate were extremely high compared to that of the coastal waters. The chlorophyll-a maxima
Backwaters; (20.95 mg m—3) coincided with the highest Protoperidinium density (113.9 x 10* cells l='). The
Bay of Bengal contribution of P. steinii ranged from 17—93% of the total phytoplankton population. Since P.

steinii is a heterotroph and voracious grazer, low autotroph density was observed during the
bloom. No mass mortality of fish or other organisms was observed, thereby indicating the non-
toxic nature of the bloom.
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In recent years, an increase in the algal bloom events
has been noticed in marine and estuarine waters, which
poses a serious threat to environmental health (Glibert,
2017; Lassus et al., 2016; Sathishkumar et al., 2021).
The root cause of algal bloom is attributed to the eu-
trophication of water bodies by natural and anthropogenic
sources such as flooding, urbanization, desalination, and
sewage (from industrial and domestic sources) disposal. Nu-
trient pollution/eutrophication in the marine environment
(coastal and estuarine) is one of the largest concerns to-
day, which is harmful to the water, soil, and biota (Boto,
1992; Ouyang and Guo, 2016). The bioavailability of nu-
trients, mainly phosphorus (P) and nitrogen (N) in excess
concentrations, lead to unwanted algal blooms (Anderson
et al., 2002; Carpenter, 2008; Diaz et al., 2017; Howarth
and Marino, 2006) that creates many problems, including
hypoxia (dead zones) thereby reducing fish and shellfish pro-
duction (Wurtsbaugh et al., 2019). Algal blooms either by
dinoflagellates, diatoms, or cyanobacteria have long been
considered to be the major driver of biodiversity changes
(Butchart et al., 2010; Davidson et al., 2012; Pysek and
Richardson, 2010). Fishery production is considerably af-
fected by the frequent bloom events by the dinoflagellates
(Shaju et al., 2018). Moreover, harmful algal species can
produce large amounts of toxins during their blooms, gen-
erally termed as harmful algal blooms (HAB), resulting in
fish kills, human illness and other significant marine environ-
mental changes (Lassus et al., 2016). Although severe poi-
soning of humans by fresh and brackish water cyanotoxins is
rare, aquatic animals are frequently killed as they consume
bloom impacted waters (Henriksen et al., 1997; Stewart
et al., 2008). Despite this trouble, algal bloom events are
also an important indicator of the hydrological health of the
marine ecosystem and play a key responsibility in carbon
cycling and aquatic dynamics. Thus, the monitoring of algal
blooms is necessary to manage marine resources and the
defense of general health (Gokul and Shanmugam, 2016).

This paper reports a dense bloom of the dinoflagel-
late Protoperidinium steinii, which is a heterotroph. Het-
erotrophic dinoflagellates (HTDs) have been recognized as
omnipresent in the marine pelagic ecosystem (Sherr and
Sherr, 2007). It is also found that about half of the di-
noflagellate species in the marine ecosystem lack chloro-
plasts and consume other plankton cells as their staple food.
Hence, often they are also considered microzooplankton-
protists. The heterotrophic dinoflagellates potentially play
an important role as herbivores. As herbivores, both the-
cate and athecate species of heterotrophic dinoflagellates
consume diatoms, which has implications for biogeochemi-
cal cycles. Heterotrophic dinoflagellate grazing contributes
to the recycling of silica, carbon, inorganic nitrogen, and
phosphorus via excretion of dissolved and particulate mat-
ter (Caron et al., 1990; Kirchman, 2000; Sherr and Sherr,
2007). Apart from their role as herbivores, they (especially
athecate heterotrophic dinoflagellates) serve as, both quan-
titatively and qualitatively, significant food reserves for the
zooplankton community, i.e. mainly copepods and meta-
zoans (Levinsen et al., 2000; Liu et al., 2005; Olsen et al.,
2006; Suzuki et al., 1999; Vincent and Hartmann, 2001).
Heterotrophic dinoflagellates also act as predators for bac-
teria, heterotrophic protists, some of the metazoans; eggs
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and naupliar stages of some copepods, and other dinoflag-
ellates (Jeong, 1999).

A review of available literature from all over the world
indicated that the bloom of this particular species (Pro-
toperidinium steinii) has never been reported from else-
where (Encylopedia of Life (EOL), 2012; D’Silva et al., 2012;
Satpathy and Mohanty, 2008; Sahu et al., 2014). Thus, the
present study is potentially the first report of P steinii
bloom observed in the backwaters of Sadras, Kalpakkam
coast, Bay of Bengal (Figure 1a). Though sporadic appear-
ances of P steinii have been reported from estuarine,
coastal, and offshore waters of India (Table 1S), it never
formed a bloom. Moreover, there are only a few reports
of bloom for this genus from Indian waters viz; Protoperi-
dinium divergens (Raji and Padmavati, 2014), Protoperi-
dinium sp. (Sanilkumar et al., 2009), Protoperidinium pal-
lidum (Ramesh et al., 2019), Protoperidinium quinquecorne
(Goswami et al., 2020). Here, we disseminate the results
of ecological monitoring and exhaustive morphological ob-
servations of the heterotrophic dinoflagellate (HTD) bloom
species. The bloom of P steinii did not give the impres-
sion to cause any toxic incident (e.g., fish kills) during the
present study. Although reports are available regarding the
grazing behavior of P. steinii (Olseng et al., 2002), no re-
ports were found on the toxic behavior of this species.
Though the bloom was non-toxic, impacts of the bloom
on water quality and phytoplankton community could be
observed during the study. Thus, the present bloom can
be categorized as non-toxic HAB as has been reported by
various authors (Anderson, 2009; Fock and Greve, 2002;
Montani et al., 1998; Smayda, 1997). The occurrence of
non-toxic HABs is a common phenomenon throughout the
world’s oceans and more so in India, where species such as
Asterionellopsis glacialis, Trichodesmium erythraeum, Noc-
tiluca spp. etc have been reported to form non-toxic blooms
frequently (Jyothibabu et al., 2017; Mishra et al., 2005,
Mohanty et al., 2007; Mohanty et al., 2010, Padmakumar
et al., 2012; Sahu et al., 2016).

An intense bloom of Protoperidinium steinii was ob-
served on 2 October 2019 in the backwaters (12.510706°N,
80.160174°E) at Kalpakkam, southeast coast of India, dur-
ing the early northeast monsoonal period. The water dis-
coloration (brownish red tide) was observed in about 1.5
km length and 100 m width in the Sadras backwater region
(Figure 1b). In general, this backwater is a biodiversity-rich
area with oysters, bivalves, other edible fishes, and man-
groves thriving in it. Also, the backwater is a visiting and
breeding ground for many non-native birds (e.g., the rarely
seen Siberian crane in the depths of winter). The backwa-
ter receives domestic and agricultural wastes directly from
the catchment area and indirectly through the Buckingham
Canal that runs parallel to the coast. A detailed description
of the study area is available in previous literature (Mohanty
et al., 2014). The backwater opens to sea for a brief pe-
riod, 2—3 months, during the northeast monsoon (October—
December) season and remains closed during the rest of the
year. Generally, this backwater ecosystem is shallow, with
the highest depth of ~2 meters. The bloom was monitored
on alternate days from 2 to 14 October 2019 (The materials
and methods of this manuscript are provided in the supple-
mentary).
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Figure 1
coast of India (b).

Taxon Description (morphology): (i) Cells sometimes
medium or small-sized. (ii) The main cell body rounded
(Figure 2). (iii) Epitheca extending in a long apical horn
and prominent three-winged antapical spines (Figure 3).
(iv) Hypotheca hemispherical. (v) The left side of the sul-
cus is usually bordered by a pronounced list. Species het-
erotrophic and often pink or yellowish, feeding by means
of a pallium. In live samples, “group attack” has been ob-
served. One cell attaches to the prey, followed by several
more individuals (Figure 2c). In culture, this species does
not grow with immobile prey (Encylopedia of Life (EOL),
2012).

393

Map showing the bloom area (~) and sampling location (a); surface water discoloration of Sadras backwater, Southeast

The genera Protoperidinium is under the phylum of di-
noflagellate and belongs to the order Peridiniales. Gomez
(2005) described more than 260 species of Protoperidinium,
which may be found worldwide. Its size may vary between
50 to 100 wm and the color of these organisms can be visible
in red, brown or yellow, which mostly depends on their se-
lection of food (Olenina et al., 2006). In our case, the aver-
age size of collected species ranged between 38—56 um (Di-
ameter) and 22—34 um (Length) (Figures 2—3). In general,
Protoperidinium is classified into two subgenera (Protoperi-
dinium and Archaeperidinium) based on their numbers of
thecal plates (2—6) (Gul and Nawaz, 2014). Commonly,
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Table 1 Physicochemical variables at different day intervals during the bloom event (October 2019).

Present study Previous values
Parameters 2-Oct 4-Oct 6-Oct 8-Oct 10-Oct 14-Oct 201617
Temperature (°C) 26.4 27.3 28.1 29.5 29.2 29.7 31.15+£0.8
pH 7.65 7.98 8.17 8.16 8.23 8.25 7.94+0.3
Salinity (PSU) 16.8 16.82 17 17.13 17.23 17.29 21.27 £ 4.9
Turbidity (NTU) 15.9 5.1 5.3 3.6 3.1 3.2 NA
Dissolved Oxygen (mg =) 5.41 3.18 3.23 4.1 4.69 4.53 6.75 + 1.4
Nitrate (uM [=") 17.65 12.38 11.13 10.8 9.3 11.32 11.05 £ 7.6
Orthophosphate (uM L") 30.5 26.5 24.8 25.9 26.1 27.0 6.32 4+ 2.1
Silicate (uM =) 239.2 248.4 230.3 211.2 197.8 223.0 102.72 £ 51.1
Ammonia (pM L") 21.15 27.96 19.15 40.2 30.76 31.1 6.55 +2.8
Total Nitrogen (uM L") 143.0 125.9 107.2 117.2 107.8 107.4 62.40 4+ 8.4
Total Phosphate (uM L=7) 32.9 27.0 26.0 26.8 27.2 27.4 6.97+ 1.8
Chlorophyll-a (mg m~—3) 20.95 5.33 2.21 0.28 0.32 0.33 5.80+ 4.1

NA: not available

Figure 2  Microscopic view of the blooming dinoflagellate Protoperidinium steinii; Figure shows the cyst of P. steinii at 200 x and
400 x magnifications (panels a, b); different magnifying views of P. steinii (c, d); developmental stages of the P. steinii (e, f);

Fluorescence image of adult species (g).

these organisms are found in both coastal and oceanic wa-
ters, rarely occur in estuarine and brackish waters, prefer-
ring warmer to tropical climates (Gribble et al., 2007). The
heterotrophic dinoflagellates (HTDs) do not filter small par-
ticles from the water as some ciliates do (Jacobson and An-
derson, 1986); instead, they capture individual phytoplank-
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ton cells, which can be approximately as large as them
or larger, and either engulf the entire cell or move the
captured cell’s body fluids into themselves through a pal-
lium or peduncle (Jacobson and Anderson, 1986). In Pro-
toperidinium, the pallium is made from the cytoplasm.
Its prey foremost of diatoms (e.g., Ditylum brightwellii
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Morphological characteristics of bloom forming dinoflagellate Protoperidinium steinii under FE-SEM at different scaling

views: (a) ventral view; (b) dorsal view; (c) antapical view; (d) cingulum with pors; (e) apical horn; (f) antapical horns.

and Thalassiosira sp.) and dinoflagellate (Gonyaulax polye-
dra) (Buskey, 1997). Protoperidinium is known to be “picky
eaters”. Some species of this particular taxa can survive
very longer periods; for example, Protoperidinium depres-
sum can survive up to 71 days in conditions of starvation
or lower food availability (Gribble et al., 2007). Smaller to
larger sizes of diatoms and dinoflagellates are the prime
food source for Protoperidinium, and their proliferation
may stimulate to cause a red tide of Protoperidinium.
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The variations in physicochemical parameters during the
bloom event (2—14 Oct 2019) are given in Table 1. Surface
water temperature during this period ranged from 26.4°C
to 29.7°C. The observed temperature seems to be con-
ducive for the bloom of this genus, as has been reported
by Raji and Padmavati (2014) during the Protoperidinium
divergens bloom in the Andaman Bay region. The correla-
tion results showed a negative relation between dinoflagel-
lates and temperature (Table 2) which could be attributed
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P. steinii

Chl-a Dino Diatoms Cyano

TP

1

0.848

1

-0.270
-0.359
-0.548
-0.565
-0.512
-0.162

1

1
-0.560
0.599
0.324
0.562
0.810

Phosphate Silicate Ammonia TN

0.365
-0.267
0.841
0.978

1

Nitrate
0.896
-0.502
0.915
0.913

1

-0.303 0.656

0.465
0.766
0.046
0.389
0.770

1

0.534
0.964
0.871
0.512
-0.573
0.878
0.936

1

Salinity Turbidity DO

-0.710
0.155
-0.733
-0.448
-0.819
0.557
-0.809
-0.495
-0.748

1

pH
0.847
-0.948
-0.386
-0.955
-0.844
-0.639
0.470
-0.975
-0.878
-0.975
-0.948
-0.941
-0.711
-0.649
-0.931
Values in bold are significantly different from 0 with a significance level alpha

1

Temp
0.904
0.953
-0.831
-0.051
-0.821
-0.597
-0.775
0.713
-0.824
-0.653
-0.863
-0.970
-0.788
-0.409
-0.830
0.759

Table 2 Correlation matrix (Pearson (n)) of environmental variables and biological parameters measures during Protoperidinium steinii bloom.

Variables
Temp

pH
Salinity
Turbidity
DO
Nitrate
Phosphate
Silicate
Ammonia
TN

TP

to the fact that the abundance of dinoflagellates including
P. steinii gradually decreased with an increase in tempera-
ture. The pH values (7.65—8.25) showed a gradual increase
from the 2nd to 14th October. A change in pH is mostly
fluctuated by environmental influence and carbon (CO,) re-
moval through the autotrophic process by phytoplankters
as well as freshwater influx and decomposition of organic
matter (Rajasegar et al., 2002). In the present study, the
increase in pH during the post-bloom period could be at-
tributed to the rate of photosynthesis. As Protoperidinium
steinii is a heterotroph and voracious grazer (Archer et al.,
1996; Hansen 1991; Lessard 1991), the low autotroph den-
sity, mainly diatoms, and cyanobacteria, during the bloom
could have resulted in a reduced primary production rate,
thereby decreasing the water pH. On the other hand, when
the dinoflagellate density gradually decreased from bloom
to post-bloom period, the diatom and cyanobacteria den-
sity gradually increased (Figure 4). This could have caused
an increase in photosynthesis rate which further led to the
increase in water pH. The above hypothesis is supported by
the fact that, when floras eradicate carbon dioxide (CO;)
by photosynthesis process, carbonate gather and after that
undergoes hydrolysis to supply the OH~. The higher concen-
tration of OH™ increases pH (Boyd and Pillai, 1985). A sim-
ilar increase in water pH due to enhanced photosynthesis
rate has been reported in confined water bodies (Satpathy,
1996; Mohanty et al., 2017). In the present study, pH de-
veloped a negative correlation with phytoplankton density.
This could be due to the fact that pH values were low dur-
ing the initial phases of bloom when the autotroph density
was high. Though during the post-bloom periods, the au-
totroph densities gradually increased, the overall correla-
tion between them was negative due to large differences
in autotroph abundance from bloom to post-bloom period.
Salinity (16.80—17.29 PSU) was relatively low during the
bloom and post-bloom period. Though the salinity variations
were not high enough, a gradual increase in salinity was no-
ticed during the study. Similar to that of temperature and
pH, salinity also developed a negative correlation with di-
noflagellate cell density. Low salinity of the water has been
reported to favor the dinoflagellate proliferation especially
the benthic species (Accoroni and Totti, 2016). Considerably
high turbidity was (15.90 NTU) observed during the bloom
which coincided with the high cell density (Protoperidinium
cyst) and the water turbidity gradually decreased during the
post-bloom period. The above observation was supported by
the positive correlation of turbidity with all the biological
components of the study. Various authors also have reported
a similar increase in water turbidity due to high phytoplank-
ton densities (Kalimurthy, 1973; Satpathy et al., 2010). The
dissolved oxygen (DO) contents varied between 3.18—5.41
mg L~". The highest concentration was observed on the day
of bloom whereas the lowest concentration was recorded
on the 3rd day of bloom. This abrupt decrease in DO might
be due to the rapid consumption of oxygen by Protoperi-
dinium, which is a heterotroph. Besides, as described ear-
lier, the low autotroph density during that period could also
have caused a low photosynthetic DO production. Similarly,
the gradual increase in DO content during the post-bloom
period could be attributed to the increased photosynthetic
activity of the autotrophs. The positive correlation of DO
with cyanobacteria that dominated the autotroph popula-

1

-0.033
0.893 0.349

1

0.871
0.995

1
0.848 0.405

0.483

1

1
0.515

0.913 0.717 0.891
0.954 0.804

0.886 0.976 0.990 0.826
0.251

0.702
0.878 0.979 0.982 0.792

0.920 0.942
0.640

0.453
-0.477
0.05 (Dino — total dinoflagellates; Cyano — cyanobacteria; P. steinii C — Cysts)

0.488
0.040
0.878
0.421

0.897
0.703
0.939
0.932
0.273
0.929

0.973
0.879
0.968
0.952

-0.373  0.523

0.518
0.127
0.622
0.920 0.764
0.654

0.990
0.840
0.986
0.813
0.434
0.987

-0.941
-0.647
-0.233
-0.906
-0.621

Chl-a

Dino
Diatoms
Cyano

P. steinii
P. steinii C
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Figure 4
the bloom event (2—14 October 2019).

tion during the post-bloom period supported the above ob-
servations (Table 2).

Nitrogen and phosphorus are the two essential nutri-
ents that cause eutrophication leading to luxuriant algal
growth when their concentrations exceed certain limits
(Vollenweider et al., 1998; Nasrollahzadeh et al., 2008).
In the present study, nitrate concentration was very high
(17.65 wM L") on the 1st day of bloom, and relatively low
values were observed during the 3rd and 5th day (Table 1).
The concentration of nitrate was significantly low during
the post-bloom period, about 6—7 times that of during the
bloom. It indicated that nitrate was consumed by the di-
atom and cyanobacteria species which were present in good
numbers during the early stages of bloom. However, the sub-
sequent increase in the adult population of P. steinii, which
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Pie chart shows the percentage contribution of Protoperidinium steinii along with other phytoplankton groups during

resulted in a decrease in other phytoplankton densities,
could be the reason for the almost similar nitrate concen-
trations observed during the post-bloom periods. The above
observation was supported by the positive correlation of ni-
trate with diatoms and P. steinii cysts. Interestingly, adult
P. steinii did not show any significant correlation with ni-
trate, downplaying its role in the HTD proliferation. Though
nitrate is thermodynamically the most stable form of com-
bined inorganic nitrogen, the fluctuation in nitrate and its
reduction mainly depends on biological activities such as
quick utilization by phytoplankton and nitrogen fixers (De
Souza, 1983; Moran and Zepp, 1997; Qasim, 1977). The
ranges of other nitrogenous nutrients like ammonia (61.15
to 19.15 uM L"), total nitrogen (143—107.20 pM L") also
indicated that the backwater is severely affected by eu-
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trophication. Relatively low ammonia concentrations were
observed during the bloom as compared to the post-bloom
period. Ammonia is an important nutrient, sometimes which
is preferred more than nitrate by the phytoplankton species
in particular environmental conditions (Gilbert et al., 1982;
Olson, 1980). Besides, the excretory release of ammonia by
invertebrates also significantly impacts its dynamics in the
aquatic environment. The present observation of relatively
low ammonia concentration during early bloom could be at-
tributed to its utilization by autotrophs. Phosphate and total
phosphorus concentrations ranged from 24.80—30.50 pM [~'
and 26—32.90 uM L= respectively. The values did not show
any particular trend except the relatively high concentra-
tion recorded on the 1st day of bloom. Phosphate showed
a positive correlation with diatoms, cyanobacteria and P
steinii cysts. Similar to that of nitrate, adult P. steinii did
not show any significant correlation with phosphate as well.
Silicate concentrations ranged from 197.8—248.4 pM L',
The highest silicate content coincided with the peak den-
sity of adult P. steinii and its concentration decreased sub-
sequently during the post-bloom period. Silicate showed ap-
positive correlation with adult P. steinii density. It indicated
the release of silicate due to grazing on diatoms and uti-
lization of silicate by autotrophs during low heterotroph (P.
steinii) densities (Caron et al., 1990; Kirchman, 2000; Sherr
and Sherr, 2007). The phosphate was four times higher and
the silicate was two times higher as the previous values in
the same saltwater region, respectively. The higher concen-
tration of phosphate and silicate was mostly loaded by the
terrestrial runoff that contains more quantities of wastes
from agriculture, aquaculture, and domestic sewage etc.

A comparison of present nutrient concentration with pre-
vious data (2016—2017) from the same location (Table 1) in-
dicated a considerable increase in phosphate, silicate, am-
monia, TN, and TP concentrations during this particular pe-
riod. Since P. steinii is a heterotroph, nutrients may not
directly affect the trigger mechanism of its bloom. How-
ever, as reported by others, the present P. steinii bloom
could be a successor of a diatom or dinoflagellate bloom
(Nakamura et al., 1995, 1995a; Tiselius and Kuylenstierna,
1996) that might have occurred in the recent past. The
present observation of the heterotrophic bloom could be
categorized into the GM1 (Generation mechanism 1) out
of the four GMs theorized by Jeong et al. (2015). In GM1,
the growth of red tide forming organisms takes place in
the presence of nutrients and light, which ultimately end
by increased heterotrophic population as they graze upon
the autotrophs. The present instance falls in GM1, as the
vertical migration, which is an essential component of GM2-
GM4, will be negligible in the present study due to low wa-
ter depth (2 m). It has been proved that heterotrophic di-
noflagellates, which are opportunistic, grow well after au-
totrophic blooms, especially diatom blooms (Olseng et al.,
2002). While the majority of Protoperidinium species ap-
pear to be diatom grazers, some can utilize, and may even
require, dinoflagellate prey for their proliferation (Buskey,
1997; Buskey et al., 1994; Hansen, 1991; Jacobson and An-
derson, 1986; Jeong and Latz, 1994; Jeong, 1999). While
Protoperidnium spp. can feed on prey larger than them-
selves (Jacobson and Anderson, 1986), they occasionally
have difficulty feeding on small organisms. For example, P.
pellucidum and P. huberi generally consume dinoflagellates
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and diatoms but do not prefer to feed on small flagellates
belonging to the class prymnesiophyceae, cryptophyceae,
and chlorophyceae (Jeong, 1999). Chl-a concentration was
relatively high in the brownish water with a maximum of
20.95 mg m~3 during the bloom period (2 October). Vari-
ous reports have also found a similar higher concentration
of chl-a during the bloom of dinoflagellate around the In-
dian coasts (Baliarsingh et al., 2016; Baliarsingh et al., 2017;
Padmakumar et al., 2018; Vijayalakshmy et al., 2018). Very
low chl-a concentration during post-bloom periods could be
attributed to the low autotrophic biomass during that pe-
riod.

Phytoplankton community structure showed a remark-
able variation from bloom to post-bloom period. During
the study, 33 species of phytoplankton were recorded,
which comprised of 11 dinoflagellates, 21 diatoms, and 1
cyanobacterium species (Table 2S). The total phytoplank-
ton density varied from 2.8 x 10* — 122.5 x 10* cells =" The
highest density was recorded on the day of bloom (2 Octo-
ber) in which the contribution of P. steinii cysts was about
1.5 times higher than the adults (Figure 5). However, on
the 3rd day of bloom (4 October), the adult density ex-
ceeded the cyst density by 20 times. This indicated the rapid
growth of the cysts to adults in two days. The contribu-
tion of Protoperidinium steinii during the study ranged from
17—-93% of the total phytoplankton population (Figure 4).
The diatom densities showed a gradual decrease from the
day of the bloom up to the 6th day (from 5.27 x 10* to
0.54 x 10* cells |=") and after that, a steady increase in
density was observed (Figure 5). Among the diatoms, the
abundance of Nitzschia sigma showed drastic changes dur-
ing the bloom. The population density of Oscillatoria sp.
(cyanobacterium) also showed a similar trend as that of di-
atoms. The above observations indicated a significant im-
pact of the early phase of bloom on other phytoplankton
groups, during which P. steinii cysts grew into adults rapidly.
Similar observations of low diatom density during dinoflag-
ellate blooms have been reported earlier (Alkawri et al.,
2016; Baliarsingh et al., 2016, 2017; Mohanty et al., 2007).

This could be mainly attributed to the heterotrophic na-
ture of P. steinii that creates a tremendous grazing pressure
on other phytoplankton (Archer et al., 1996; Hansen, 1991;
Kjeeret et al., 2000; Lessard, 1991). With the decline of the
bloom biomass, the population density of other phytoplank-
ters gradually increased due to the reduction of grazing.
Grazing by HTDs in natural populations and laboratory stud-
ies has been well documented (Jeong, 1999; Jeong et al.,
2015; Olseng et al., 2002). Though the rate of grazing in
the case of HTDs is low as compared to ciliates, the pres-
ence of the HTDs in high numbers results in the removal
of prey by them in larger quantities as compared to other
heterotrophs (Jeong, 1999). Due to this process, HTD graz-
ing is also thought to contribute to the decline of autotroph
bloom in some coastal waters (Eppley and Harrison, 1975;
Jeong et al., 2015; Nakamura et al., 1992; Williams and Ep-
pley, 1967).

Protoperidinium spp. Have been observed to graze upon
diatoms and dinoflagellates such as Leptocylindrus dani-
cus, Ditylum brightwellii, Thalassiosira sp., Skeletonema
costaturn, Gonyaulax polyedra, Gymnodinium sanguineum,
Prorocentrum micans, Ceratium furca etc. (Jeong, 1999;
Olseng et al., 2002). During the present study, many of
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these species were not available in the autotrophic biomass.
However, the significantly declined abundance of Nitzschia
sigma and Oscillatoria sp. indicated that Protoperidinium
steinii perhaps preyed upon these autotrophs, which has
never been reported earlier. Maximum ingestion and clear-
ance rates of HTDs on phytoplankton generally range from
0.01—1 ng C per grazer per h and 0.01—3 ul per grazer per
h, respectively (Jeong, 1999). For Protoperidinium spp., the
ingestion rate varies from 0.06—0.74 ng C per grazer per h
and the clearance rate is 0.05—28.3 ul per grazer per h.
The growth rate of Protoperidinium spp. has been reported
in the range of 0.005—0.05 per h. Considering the highest
growth rate, the doubling time of the P. steinii would be
about 48 h. Thus, the abundance of adult P. steinii, which
was almost double on the 3rd day as compared to the 1st
day, could be attributed to their rapid growth rate. How-
ever, the total dinoflagellate population density including P
steinii cysts showed some reduction on the 3rd day, which
could be attributed to the decline in prey biomass as well as
cannibalistic effects in absence of suitable prey. It has been
reported that Protoperidinium divergens uses cannibalism,
in the absence of unfavorable prey, for prolonged survival
and to maintain similar bioluminescence levels as observed
under favorable prey conditions (Latz and Jeong, 1996).

The P. steinii bloom persisted for a brief period in the
backwaters. Though we have been monitoring these wa-
ter bodies for more than a decade, such a phenomenon
has never been encountered. The bloom had a signifi-
cant impact on the phytoplankton community and other
physicochemical properties of the water body. Being a het-
erotrophic dinoflagellate, P. steinii bloom is mainly depen-
dent on food availability rather than water quality. Contin-
uous monitoring and in-depth analysis of the environmental
conditions are required to ascertain the triggering mecha-
nisms for such an event.
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