PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |
Tytuł artykułu

Effects of two sodium salts on fatty acid and essential oil composition of basil (Ocimum basilicum L.) leaves

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of two sodium salts on growth, fatty acids, and essential oil compositions were investigated in a medicinal and aromatic plant, Ocimum basilicum cultivated in hydroponic medium. Plants were subjected to an equimolar concentration of Na2SO4 (25 mM) and NaCl (50 mM) for 15 days. Our results showed that leaf growth rate was more depressed by 25 mM Na2SO4 than by 50 mM NaCl. The total fatty acid contents did not show any change in plants. a-Linolenic, palmitic, and linoleic acids were the major fatty acids. The identification of basil leaf fatty acids has not been previously studied and this work revealed the predominance of polyunsaturated fatty acids. Under both salts, leaf fatty acid composition remained unchanged. Regarding the essential oil yield, it decreased significantly by 28 % under 25 mM Na2SO4 and showed an increase by 27 % under 50 mM NaCl. The major volatile compound in leaves was linalool with 34.3 % of total essential oil constituents, followed by eugenol (19.8 %), 1.8-cineole (14.4 %) and methyl eugenol (5.2 %). Further, levels of eugenol and methyl eugenol were most modulated by salt, and the negative correlation between these two compounds reflects the stimulation of O-methyltransferase activity under both salts.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
08
Opis fizyczny
p.2365-2372,fig.,ref.
Twórcy
autor
  • Faculte´ des Sciences de Tunis, Physiologie et Biochimie de la Re´ponse des Plantes Aux Contraintes Abiotiques, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Faculte´ des Sciences de Tunis, Physiologie et Biochimie de la Re´ponse des Plantes Aux Contraintes Abiotiques, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Faculte´ des Sciences de Tunis, Physiologie et Biochimie de la Re´ponse des Plantes Aux Contraintes Abiotiques, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050 Hammam-lif, Tunisia
autor
  • Faculte´ des Sciences de Tunis, Physiologie et Biochimie de la Re´ponse des Plantes Aux Contraintes Abiotiques, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Faculte´ des Sciences de Tunis, Physiologie et Biochimie de la Re´ponse des Plantes Aux Contraintes Abiotiques, Campus Universitaire, 2092 Tunis, Tunisia
autor
  • Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050 Hammam-lif, Tunisia
Bibliografia
  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, Carol Stream
  • Baâtour O, Kaddour R, Aidi Wannes W, Lachaâl M, Marzouk B (2010) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 32(1):45–51
  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956
  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2011) Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 33:153–162
  • Benson AA (1964) Plant membrane lipids. Ann. Rev. Plant Physiol 15:1
  • Bernstein N, Kravchik M, Dudai N (2010) Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development. Ann App Bio 156:167–177
  • Bilski JJ, Nelson DC, Conlon RL (1988) The response of four potato cultivars to chloride salinity, sulfate salinity and calcium in pot experiments. Am Pot J 65:85–90
  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem and Physiol 37:911–917
  • Bourgou S, Bettaieb I, Saidani M, Marzouk B (2010) Fatty acids, essential oil and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agr Food Chem 58:12399–12406
  • Cecchi G, Biasini S, Castano J (1985) Méthanolyse rapide des huiles en solvant. Note de laboratoire. Rev Fran Corp Gra 4:163–164
  • Charles DJ, Joly RJ, Simon JE (1990) Effect of osmotic stress on the essential oil content and composition of peppermint. Phytochem 29:2837–2840
  • Finley JW, Shahidi F (2001) The chemistry, processing and health benefits of highly unsaturated fatty acids: an overview. In: John WJ, Shahidi F (eds) Omega- 3 Fatty acids, Chemistry, Nutrition and Health Effects, vols 1–13. Am Chem Soc, Washington, pp 258–279
  • Gignon A, Matos AR, Aferay D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 94:345–351
  • Halliwell B (1987) Oxidative damage, lipid peroxidation, and antioxidant protection in chloroplasts. Chem Phy Lip 44: 327–340
  • Harrathi J, Hosni K, Bouraoui KN, Attia H, Marzouk B, Magne C, Lachaâl M (2011) Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol Plant 24:129–137
  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Cal Agr Exp Stat Cir 347:1–32
  • Khan AH, Ashraf MY, Naqvi SSM, Khanzada B, Ali M (1995) Growth, ion and solute contents of sorghum grown under NaCl and Na2SO4 salinity stress. Acta Physiol Plant 17:61–268
  • Lachowicz KJ, Jones GP, Briggs DR, Bienvenu FE, Palmer MV, Mishra V, Hunter MM (1997) Characteristics of plants and plant extracts from five varieties of basil (Ocimum basilicum L.) grown in Australia. J Agr Food Chem 45:2660–2665
  • Lee SJ, Umano K, Shibamoto T, Lee KG (2005) Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 91:131–137
  • Lewinsohn E, Ziv-Raz I, Dudai N, Tadmor Y, Lastochkin E, Larkov O, Chaimovitsh D, Ravid U, Putievsky E, Pichersky E, Shoham Y (2000) Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci 160:27–35
  • Malkit A, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant Alga Dunaliella salina. Plant Physiol 129:1320–1329
  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122
  • Marotti M, Piccaglia R, Giovanelli E (1996) Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J Agr Food Chem 44:3926–3929
  • Meiri A, Kamburoff J, Poljakoff-Mayber A (1971) Response of bean plants to sodium chloride and sodium sulfate salinization. Ann Bot 35:837–847
  • Naffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crop Prod 28:137–142
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Saf 60:324–349
  • Rie De Vos CH, Ten Bookum WM, Voojis R, Schat H, Deko LJ (1993) Effect of copper on fatty acid composition and peroxydation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158
  • Said-Al Ahl HAH, Mahmoud Abeer A (2010) Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Oz J App Sci 3(1):97–111
  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of D12-fatty acid desaturase from arachidonic acidproducing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820
  • Simon JE, Morales MR, Phippen WB, Vieira RF, & Hao Z (1999) A source of aroma compounds and a popular culinary and ornamental herb. In J. Janick (Ed.), Perspectives on new crops and new uses. Alexandria, pp. 499-505
  • Tarchoune I, Sgherri C, Izzo R, Lachaâl M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 48:772–777
  • Tarchoune I, Degl’Innocenti E, Kaddour R, Guidi L, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant 34:607–615
  • Telci I, Bayram E, Yılmaz G, Avcı B (2006) Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochem Syst Ecol 34:489–497
  • Vernin G, Metzger J (1984) Analysis of basil oils by GC-MS data bank. Perfum Flavor 9:71–86
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1b23a949-ceb8-49b5-8b04-25d41f5e2209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.