PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 10 |

Tytuł artykułu

Występowanie i ekologiczne uwarunkowania podwójnej symbiozy mykoryzowej oraz jej potencjalne znaczenie w zmieniającym się klimacie

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Occurence and ecological determinants of dual mycorrhizal symbiosis of forest tree species and its potential importance in changing climate

Języki publikacji

PL

Abstrakty

EN
The distribution of trees depends on the climate, but mycorrhizal symbiosis shapes their distribution along the climatic gradient and the ability of trees to resistant the effects of climate change. Ectomycorrhiza is adapted to the cold climate so ectomycorrhizal trees predominate in boreal, mountain and temperate forests. Arbuscular mycorrhizal tree species are few in temperate forests but common in the dry and warm climate in tropical and subtropical zones. Some trees can enter dual mycorrhizal symbiosis, i.e. ectomycorrhizal and arbuscular mycorrhizal symbiosis. Both types of mycorrhizae benefit the plants, but each type is more adapted to the other environmental conditions. On the roots of dual mycorrhizal trees, the dominance of one mycorrhizal type over another is switching with the increasing value of environmental factors such as temperature of soil, moisture and nutrient availability. Thus dual mycorrhizal trees are more resistant to shift in habitat conditions including seasonal flooding and/or drought and inhabit ecosystems like floodplains, riparian forests and savanna. In general, dual mycorrhizal trees in compared with the single−type mycorrhizal trees are characterized by greater survival, growth, nutrient uptake and longitude range in both native and invasive range put together, so seems to be more resistant to climate changes. These adaptations are an asset for native trees, but on the other hand, the threat of alien tree species. The general proportion of plant species naturalized outside their native range is significantly higher for plants able to enter the dual mycorrhizal symbiosis than only one type. The similar patterns concerning the invasive tree species. Dual mycorrhizal tree species constitute about one−third of all the invasive tree species, but about twice as many among those, which are invasive in five or more of seven biogeographic regions of the world, including willow, poplar, eucalyptus and acacia species. Most of all, invasive tree species from subtropical and tropical zones, such as eucalyptus and black locust threaten European forests. These trees are well adapted to dry conditions so are less affected than European trees by drought, but their plantations caused the drop in groundwater level, intensify the effects of drought on native trees and reduce the efficiency of surrounding agricultural production. In the context of climate changes and the seasonal drought in Poland, expanding knowledge of interactions among microbial symbionts and tree species is necessary to a better assessment of the future benefits and risk involved in the use of each individual tree species.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

10

Opis fizyczny

s.860-869,rys.,tab.,bibliogr.

Twórcy

autor
  • Instytut Dendrologii Polskiej Akademii Nauk, ul. Parkowa 5, 62-035 Kórnik

Bibliografia

  • Adjoud-Sadadou D., Halli-Hargas R. 2017. Dual mycorrhizal symbiosis: An asset for eucalypts out of Australia? Canadian Journal of Forest Research 47 (4): 500-505. DOI: https://doi.org/10.1139/cjfr-2016-0292.
  • Almeida A. C., Smethurst P. J., Siggins A., Cavalcante R. B. L., Borges N. 2016. Quantifying the effects of Eucalyptus plantations and management on water resources at plot and catchment scales. Hydrological Processes 30 (25): 4687-4703. DOI: https://doi.org/10.1002/hyp.10992.
  • Averill C., Turner B. L., Finzi A. C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505 (7484): 543-545. DOI: https://doi.org/10.1038/nature12901.
  • Bidondo L. F., Colombo R. P., Recchi M., Silvani V. A., Pérgola M., Martínez A., Godeas A. M. 2018. Detection of arbuscular mycorrhizal fungi associated with pecan (Carya illinoinensis) trees by molecular and morphological approaches. MycoKeys 42: 73-88. DOI: https://doi.org/10.3897/mycokeys.42.26118.
  • Branco S., Videira N., Branco M. R., Paiva R. 2015. A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: Towards an integrated management aproach. Journal of Environmental Management 149: 17-26. DOI: https://10.1016/j.jenvman.2014.09.026.
  • Brundrett M. C., Tedersoo L. 2018a. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220 (4): 1108-1115. DOI: https://doi.org/10.1111/nph.14976.
  • Brundrett M. C., Tedersoo L. 2018b. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytologist 221 (1): 18-24. DOI: https://doi.org/10.1111/nph.15440.
  • Cheeke T. E., Phillips P. R., Brzostek E. R., Rosling A., Bever J. D., Fransson P. 2017. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist 214 (1): 432-442. DOI: https://doi.org/10.1111/nph.14343.
  • Dickie I. A., Koide R. T., Fayish A. C. 2001. Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytologist 151 (1): 257-264. DOI: https://doi.org/10.1046/j.1469-8137.2001.00148.x.
  • Dyderski M. K., Paź S., Frelich L. E., Jagodziński A. M. 2017. How much does climate change threaten European forest tree species distributions? Global Change Biology 24 (3): 1150-1163. DOI: https://doi.org/101111/gcb13925.
  • Horton T. R., Cazares E., Bruns T. D. 1998. Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8 (1): 11-18. DOI: https://doi.org/10.1007/s005720050205.
  • Kałucka I., Jagodziński A. M. 2013. Grzyby ektomykoryzowe w obiegu węgla w ekosystemach leśnych. Sylwan 157 (11): 817-830. DOI: http://doi.org/10.26202/sylwan.2013035.
  • Karliński L, Rudawska M., Kieliszewska-Rokicka B., Leski T. 2010. Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20 (5): 315-324. DOI: https://doi.org/10.1007/s00572-009-0284-8.
  • Kilpelainen J., Barbero-Lopez A., Vestberg M., Heiskanen J., Lehto T. 2017. Does severe soil drought have after-effects on arbuscular and ectomycorrhizal root colonisation and plant nutrition? Plant and Soil 418: 377-386. DOI: https://doi.org/10.1007/s11104-017-3308-8.
  • Kovács G. M., Vágvölgyi C., Oberwinkler F. 2003. In vitro interaction of the truffle Terfezia terfezioides with Robinia pseudoacacia and Helianthemum ovatum. Folia Microbiologica 248: 369-378. DOI: https://doi.org/10.1007/bf02931369.
  • Lasy Państwowe w liczbach. 2018. CILP, Warszawa.
  • Liang H. B., Xue Y. Y., Li Z. S., Wang S., Wu X., Gao G. Y., Liu G., Fu B. J. 2018. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. Forest Ecology and Management 412: 62-69. DOI: https://doi.org/10.1016/j.foreco.2018.01.041.
  • Liang J., Crowther T. W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E.-D., McGuire A. D., Bozzato F., Pretzsch H., de-Miguel S., Paquette A., Hérault B., Scherer-Lorenzen M., Barrett Ch. B., Glick H. B., Hengeveld G. M., Nabuurs G. J., Pfautsch S., Viana H., Vibrans A. C., Ammer Ch., Schall P., Verbyla D., Tchebakova N., Fischer M., Watson J. V., Chen H. Y. H., Lei X., Schelhaas M.-J., Lu H., Gianelle D., Parfenova E. I., Salas Ch., Lee E., Lee B., Kim H. S., Bruelheide H., Coomes D. A., Piotto D., Sunderland T., Schmid B., Gourlet-Fleury S., Sonké B., Tavani R., Zhu J., Brandl S., Vayreda J., Kitahara F., Searle E. B., Neldner V. J., Ngugi M. R., Baraloto Ch., Frizzera L., Bałazy R., Oleksyn J., Zawiła-Niedźwiecki T., Bouriaud O., Bussotti F., Finér L., Jaroszewicz B., Jucker T., Valladares F., Jagodziński A. M., Peri P. L., Gonmadje Ch., Marthy W., O’Brien T., Martin E. H., Marshall A. R., Rovero F., Bitariho R., Niklaus P. A., Alvarez-Loayza P., Chamuya N., Valencia R., Mortier F., Wortel V., Engone-Obiang N. L., Ferreira L. V., Odeke D. E., Vasquez R. M., Lewis S. L., Reich P. B. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354 (6309): aaf8957 DOI: https://doi.org/10.1126/science.aaf8957.
  • Luciani E., Palliotti A., Tombesi S., Gardi T., Micheli M., Berrios J. G., Zadra C., Farinelli D. 2019. Mitigation of multiple summer stresses on hazelnut (Corylus avellana L.,): effects of the new arbuscular mycorrhiza Glomus iranicum tenuihypharum sp., nova. Scientia Horticulturae 257: 108659. DOI: https://doi.org/10.1016/j.scienta.2019.108659.
  • Ławrynowicz M., Markowić M., Milenković M., Ivanćević B. 1997. Terfezia terfezioides – a new hypogeous fungus for Balkan Peninsula. Acta Myologica 32 (2): 233-238. DOI: https://doi.org/10.5586/am.1997.019.
  • Mirabelli C., Tullio M., Pierandrei F., Rea E. 2009. Effect of arbuscular mycorrhizal fungi on micropropagated hazelnut (Corylus avellana L.) plants. Acta Hortic. 812: 467-472. DOI: https://doi.org/10.17660/ActaHortic.2009.812.67.
  • Moyano J., Dickie I., Rodriguez-Cabal M. A., Nuńez M. A. 2020. Patterns of plant naturalization show that facultative mycorrhizal plants are more likely to succeed outside their native Eurasian ranges. Ecography 00: 1-12. DOI: https://doi.org/10.1111/ecog.04877.
  • Moyersoen B., Fitter A. H. 1999. Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8: 247-253. DOI: https://doi.org/10.1007/s005720050241.
  • Neville J., Tessier J., Morrison I., Scarratt J., Canning B., Klironomos J. 2002. Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Applied Soil Ecology 19: 209-216. DOI: https://doi.org/10.1016/S0929-1393(01)00193-7.
  • Pauchard A., Milbau A., Albihn A., Alexander J., Nun M. A., Daehler C., Englund G., Essl F., Evengard B., Greenwood G. B. M., Haider S., Lenoir J., McDougall K., Muths E., Nuńez M. A., Olofsson J., Pellissier L., Rabitsch W., Rew L. J., Robertson M., Sanders N., Kueffer C. 2015. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions 18: 345-353. DOI: https://doi.org/10.1007/s10530-015-1025-x.
  • Paź S., Czapiewska N., Dyderski M. K., Jagodziński A. M. 2018. Ocena introdukcji Carya ovata (Mill.) K. Koch na siedlisku grądu w Nadleśnictwie Czerniejewo. Sylwan 162 (1): 41-48. DOI: https://doi.org/10.26202/sylwan.2017094.
  • Rejmánek M., Richardson D. M. 2013. Trees and shrubs as invasive alien species – 2013 update of the global database. Diversity and Distributions 19 (8): 1093-1094. DOI: https://doi.org/10.1111/ddi.12075.
  • Rudawska M., Leski T. 2015. Mykoryza wiązu. W: Bugała W., Boratyński A., Iszkuło G. [red.]. Wiązy Ulmus glabra Huds., U. leavis Pall., U. minor Mill.. Bogucki Wydawnictwo Naukowe, Poznań – Kórnik. 95-112.
  • Rudawska M., Leski T., Wilgan R., Karliński L., Kujawska M., Janowski D. 2018. Mycorrhizal associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. Mycorrhiza 28: 549-560. DOI: https://doi.org/10.1007/s00572-018-0846-8.
  • Shah F., Nicolás C., Bentzer J., Ellström M., Smits M., Rineau F., Canbäck B., Floudas D., Carleer R., Lackner G., Braesel J., Hoffmeister D., Henrissat B., Ahrén D., Johansson T., Hibbett D. S., Martin F., Persson P., Tunlid A. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209 (4): 1705-1719. DOI: https://doi.org/10.1111/nph.13722.
  • Smith S. E., Read D. J. 2008. Mycorrhizal symbiosis. Academic Press, CA, USA.
  • Steidinger B. S., Crowther T. W., Liang J., Van Nuland M. E., Werner G. D. A., Reich P. B., Nabuurs G., de-Miguel S., Zhou M., Picard N., Herault B., Zhao X., Zhang C., Routh D., Abegg M., Adou Yao C. Y., Alberti G., Almeyda Zambrano A., Alvarez-Davila E., Alvarez-Loayza P., Alves L. F., Ammrt Ch., Antón-Fernández C., Araujo-Murakami A., Arroyo L., Avitabile V., Aymard G., Baker T., Bałazy R., Banki O., Barroso J., Bastian M., Bastin J.-F., Birigazzi L., Birnbaum P., Bitariho R., Boeckx P., Bongers F., Bouriaud O., Brancalion P. H. S., Brandl S., Brearley F. Q., Brienen R., Broadbent E., Bruelheide H., Bussotti F., Cazzolla Gatti R., Cesar R., Cesljar G., Chazdon R., Chen H. Y. H., Chisholm Ch., Cienciala E., Clark C. J., Clark D., Colletta G., Condit R., Coomes D., Cornejo Valverde F., Corral-Rivas J. J., Crim P., Cumming J., Dayanandan S., de Gasper A. L., Decuyper M., Derroire G., DeVries B., Djordjevic I., Ięda A., Dourdain A., Engone Obiang N. L., Enquist B., Eyre T., Fandohan A. B., Fayle T. M., Feldpausch T. R., Finér L., Fischer M., Fletcher Ch., Fridman J., Frizzera L., Gamarra J. G. P., Gianelle D., Glick H. B., Harris D., Hector A., Hemp A., Hengeveld G., Herbohn J., Herold M., Hillers A., Honorio Coronado E. N., Huber M., Hui C., Cho H., Ibanez T., Jung I., Imai N., Jagodziński A. M., Jaroszewicz B., Johannsen V., Joly C. A., Jucker T., Karminov V., Kartawinata K., Kearsley E., Kenfack D., Kennard D., Kepfer-Rojas S., Keppel G., Khan M. L., Killeen T., Kim H. S., Kitayama K., Köhl M., Korjus H., Kraxner F., Laarmann D., Lang M., Lewis S., Lu H., Lukina N., Maitner B., Malhi Y., Marcon E., Marimon B. S., Marimon-Junior B. H., Marshall A. R., Martin E., Martynenko O., Meave J. A., Melo-Cruz O., Mendoza C., Merow C., Mendoza A. M., Moreno V., Mukul S. A., Mundhenk P., Nava-Miranda M. G., Neill D., Neldner V., Nevenic R., Ngugi M., Niklaus P., Oleksyn J., Ontikov P., Ortiz-Malavasi E., Pan Y., Paquette A., Parada-Gutierrez A., Parfenova E., Park M., Parren M., Parthasarathy N., Peri P. L., Pfautsch S., Phillips O., Piedade M. T., Piotto D., Pitman N. C. A., Polo I., Poorter L., Poulsen A. D., Poulsen J. R., Pretzsch H., Ramirez Arevalo F., Restrepo-Correa Z., Rodeghiero M., Rolim S., Roopsind A., Rovero F., Rutishauser E., Saikia P., Saner P., Schall P., Schelhaas M.-J., Schepaschenko D., Scherer-Lorenzen M., Schmid B., Schöngart J., Searle E., Seben V., Serra-Diaz J. M., Salas-Eljatib Ch., Sheil D., Shvidenko A., Silva-Espejo J., Silveira M., Singh J., Sist P., Slik F., Sonké B., Souza A. F., Stereńczak K., Svenning J.-Ch., Svoboda M., Targhetta N., Tchebakova N., ter Steege H., Thomas R., Tikhonova E., Umunay P., Usoltsev V., Valladares F., van der Plas F., Van Do T., Vasquez Martinez R., Verbeeck H., Viana H., Vieira S., von Gadow K., Wang H.-F., Watson J., Westerlund B., Wiser S., Wittmann F., Wortel V., Zagt R., Zawiła-Niedźwiecki T., Zhu Z.-X., Zo-Bi I. C., Peay K. G. 2019. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569: 404-408. DOI: https://doi.org/10.1038/s41586-019-1128-0.
  • Takács T., Cseresnyés I., Kovács R., Parádi I., Kelemen B., Szili-Kovács T., Füzy A. 2018. Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM Fungi. Front. Plant Sci. 9: 1-14 DOI: https://doi.org/10.3389/fpls.2018.01631.
  • Terrer C., Vicca S., Hungate B. A., Phillips R. P., Prentice I. C. 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353 (6294): 72-74 https://doi.org/10.1126/science.aaf4610.
  • Teste F. P., Jones M. D., Dickie I. A. 2019. Dual-mycorrhizal plants: their ecology and relevance. New Phytologist. 225 (5): 1835-1851. DOI: https://doi.org/10.1111/nph.16190.
  • Vitkova M., Müllerová J., Sádlo J., Pergl J., Pyšek P. 2017. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management 384: 287-302. DOI: https://doi.org/10.1016/j.foreco.2016.10.057.
  • Wang X. J., Liu P. G., Sun L. H. 2017. Molecular and morphological data confirmed the presence of the rare species Mattirolomyces terfezioides in China. 39 (2): 89-93. DOI: https://doi.org/10.1016/j.pld.2016.10.002.
  • Watson G., von der Heide-Spravka K., Howe V. 1990. Ecological significance of endo-ectomycorrhizae in the oak subgenus Erythrobalanus. Arboricultural Journal 14: 107-116.
  • Wilgan R. 2020. Dual and Tripartite Symbiosis of Invasive Woody Plants. W: Shrivastava N., Mahajan S., Varma A. [red.]. Symbiotic Soil Microorganisms – Biology and Applications. Springer Nature Switzerland AG. DOI: https://doi.org/10.1007/978-3-030-51916-2.
  • Wilgan R., Leski T., Kujawska M., Karliński L., Janowski D., Rudawska M. 2020. Ectomycorrhizal fungi of exotic Carya ovata (Mill.) K. Koch in the context of surrounding native forests on Central European sites. Fungal Ecology 44: 100908 DOI: https://doi.org/10.1016/j.funeco.2019.100908.
  • Wojda T., Klisz M., Jastrzębowski S., Mionskowski M., Szyp-Borowska I., Szczygieł K. 2015. The geographical distribution of the black locust (Robinia pseudoacacia L.) in Poland and its role on non-forest land. Papers on Global Change 22: 101-113.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-1b1c2783-492f-40c8-98e5-1f7fc3da3a7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.