PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 71 |

Tytuł artykułu

Spatial autocorrelation of tree attributes in naturally regenerated managed beech (Fagus sylvatica) forests in the Beskid Niski Mountains, southern Poland

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
European beech (Fagus sylvatica L.) is a widely distributed forest tree species in central, southern and western Europe. In Poland it reaches the eastern limit of its natural range. The three forest stands selected for the analysis presented here are located in the Dukla Forest Inspectorate, southern Poland in the Beskid Niski Mountains. The measurement plots were rectangular, 0.35 ha each, established under homogenous conditions. The origin of all stands is natural and up to now they were thinned several times according to selective thinning method. The main tree species on each plot is European beech. In each stand (x, y) coordinates, the species, total heights of trees and their diameters at breast height were recorded. Total tree height, diameter, basal area and tree volume were considered as marks in statistical analysis. The aim of this paper is to find out the differences in the spatial autocorrelation of different tree marks as well as to explain the reasons for differences if they were observed. The empirical mark correlation functions indicated that there is a negative spatial correlation of all these marks in all three forest stands, i.e. trees close together tend to have smaller marks than the average in the stand. No significant spatial correlation was found for the tree heights. Diameter, basal area and volume show some correlation, but only in one stand a deviation test showed that the detected spatial correlation is significant. The mark variograms indicated that neighboring trees tended to have similar sizes.

Wydawca

-

Czasopismo

Rocznik

Tom

71

Opis fizyczny

p.129-136,fig.,ref.

Twórcy

autor
  • Departament of Silviculture, Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 69, 60-625 Poznan, Poland
autor
  • Institut of Stochastics, TU Bergakademie Freiberg, 09596 Freiberg, Germany

Bibliografia

  • Baddeley A., Turner R. 2005. Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12: 1–42.
  • Comas C., Delicado P., Mateu J. 2011. A second order approach to analyze spatial point patterns with functional marks. Test 20: 503–523.
  • Comas C., Mateu J. 2007. Modeling forest dynamics: a perspective from point process methods. Biometrical Jorurnal 49: 176–196.
  • Degenhardt A. 1999. Description of tree distribution patterns and their development through marked Gibbs processes. Biometrical Journal 41: 457–470.
  • Fortin M.-J., Dale M. 2005. Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge, UK. 365 pp.
  • Gavrikov V.L., Stoyan D 1995. The use of marked point processes in ecological and environmental forest studies. Environmental and Ecological Statistics 2: 331–344.
  • Goulard M., Pagès L., Cabanettes A. 1995. Marked point process: using correlation functions to explore a spatial data set. Biometrical Journal 37: 837–853.
  • Grabarnik P., Myllymäki M., Stoyan D. 2011. Correct testing of mark independence for marked point patterns. Ecological Modelling 222: 3888–3894.
  • Illian J., Penttinen A., Stoyan H., Stoyan H. 2008. Statistical analysis and modeling of spatial point patterns. John Wiley & Sons Ltd. Chichester, pp. 341–361.
  • Kint V., Van Meirvenne M., Nachtergale L., Geudens G., Lust N. 2003. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. Forest Science 49: 36–49.
  • Law R., Illian J., Burslem D.F.R.P., Gratzer G., Gunatilleke C.V.S., Gunatilleke I.A.U.N. 2009. Ecological information from spatial patterns of plants: insights from point process theory. Journal of Ecology 97: 616–628.
  • Legendre P., Fortin M.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.
  • Ledo A., Condés S., Montes F. 2011. Intertype mark correlation function: A new tool for the analysis of species interactions. Ecological Modelling 222: 580–587.
  • Lexerød N.L., Eid T. 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management 222: 17–28.
  • Mateu J. 2000. Second-order characteristics of spatial marked processes with applications. Nonlinear analysis: Real World Applications 1: 145–162.
  • Mason W.L., Connolly T., Pommerening A., Edwards C. 2007. Spatial structure of semi-natural and plantation stands of Scots pine (Pinus sylvestris L.) in northern Scotland. Forestry 80: 567–586.
  • Myllamäki M., Grabarnik P. 2011. Marktest. R Documentation.
  • Penttinen A., Stoyan D., Henttonen H. 1992. Marked point processes in forest statistics. Forest Science 38: 806–824.
  • Penttinen A. 2006. Statistics for marked point patterns. In: Yearbook of the Finnish Statistical Society 2006: 70–91.
  • Picard N., Bar-Hen A., Mortier F., Chadoeuf J. 2009. Understanding the dynamics of an undisturbed tropical rain forest from the spatial pattern of trees. Journal of Ecology 97: 97–108.
  • Pommerening A. 2002. Approaches to quantifying forest structures. Forestry 75: 305–324.
  • Pommerening A., Särkkä A. 2013. What mark variograms tell about spatial plant interactions. Ecological Modeling 251: 64–72.
  • Pretzsch H. 2010. Forest dynamics, growth and yield. Springer-Verlag Berlin Heidelberg, pp. 223–285.
  • R Core Team 2002. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-9000-07-0, URL http://www.R-project.org/.
  • Stoyan D., Penttinen A. 2000. Recent application of point process methods in forestry statistics. Statistical Science 15: 61–78.
  • Suzuki S.N., Kachi N., Suzuki J.I. 2008. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest. Analysis using spatial autocorrelation and the mark correlation function. Annals of Botany 102: 435–441.
  • Wälder O., Stoyan D. 1996. On variograms in point process statistics. Biometrical Journal 38: 895–905.
  • Wälder O., Wälder O. 2008. Analysing interaction effects using the mark correlation function. iForest 1: 34–38.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1adf73b5-5f43-4e16-85d1-d4093a73e524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.