PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 3 |
Tytuł artykułu

Gabion wall testing during the forced overloading in the geotechnical centrifuge

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Badanie zmiany geometrii ściany gabionowej podczas wymuszonego przeciążenia
Języki publikacji
EN
Abstrakty
EN
The paper is referring to the geotechnical centrifuge modelling that is used to prove the gabion facing wall stability. The gabion reinforcement wall is 15.3 meters tall and 17 meters length. The centrifuge model was speed up to 50 g and 75 g, and hadn't failure. The test results show that the largest settlements under 75 g speed was about 2.25 meters vertically and mainly in the gabion wall and just behind the gabion section. The largest settlements under 50 g speed was about 1.07 meter vertically and 1.8 meters horizontally. The value of the settlement increases with the shortness of the reinforcement. The value of the settlement decreases with the reduction of the gabion spacing in the wall facing. Reinforced gabion retaining wall can work safely. Nevertheless, mechanical and deformation behaviors need to be studied for wide applying in a practical engineering.
PL
W artykule przedstawiono zastosowanie centrifuge - wirówki przeciążeniowej w literaturze geotechnicznej. Zaprezentowano realny przykład zachowania się ściany zbudowanej od frontu z gabionu, którą poddano wymuszonemu przeciążeniu silą 50 g i 75 g. Badania zostały przeprowadzone na zlecenie The Collin Group w Laboratorium Carleton, w Departamencie Civil Engineering and Engineering Mechanics Faculty, University of Columbia. Badania w wirówce przeciążeniowej wykazały, że ściana o początkowej wysokości 15,3 m i długości 17 m została stabilna przy przeciążeniu 75 g. Największe pionowe osiadanie wyniosło 1,07 m, a poziome 1,82 m.
Wydawca
-
Rocznik
Tom
14
Numer
3
Opis fizyczny
p.35-43,fig.,ref.
Twórcy
  • Water Centre Laboratory, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences - SGGW, 6 Ciszewskiego St., 02-776 Warsaw, Poland
Bibliografia
  • Atkinson, J.H. (1993). An introduction to the mechanics of soils and foundations. McGraw-Hill, London.
  • Bolton, M.D., Pang, P.L.R. (1982). Collapse limit states of reinforced earth retaining walls. Geotechnique, 32, 4, 349-367.
  • Bucky, P.B. (1935). Use of Models for the Study of Mining Problems. Technical Publication, 425. American Institute of Mining and Metallurgical Engineers, A, mining methods, 44.
  • Bucky, P.B., Solakian, A.G., Baldin, L.S. (1935). Centrifugal Method of Testing Models. Civil Engineering, 5 (5), 287-290.
  • Chen, Huei-Tsyr, Hung, Wen-Yi, Chang, Chin-Chang, Chen, Yuan-Ji, Lee, Chung-Jung (2007): Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill. Geotextiles and Geomembranes, 25, 346-359.
  • Hu, Y., Zhang, G., Zhang, Jian-Min, Lee, C.F. (2010). Centrifuge modeling of geotextile-reinforced cohesive slopes. Geotextiles and Geomembranes, 28, 12-22.
  • Iacorossi, M., Ling, H.I., Gottardi, G., Li, L. (2013). Centrifuge modeling of earth-reinforced retaining walls. Proc. of International Symposium on Design and Practice of Geosynthetic--Reinforced Soil Structures, Bologna.
  • Jaber, M., Mitchell, J.K. (1990). Behaviour of reinforced soil walls at limit state. In: Performance of reinforced soil structures. Ed. A. McGown, K.C. Yeo, K.Z. Andrawes. Thomas Telford, London, 53-57.
  • Kazimierowicz-Frankowska, K. (2005). A case study of a geosynthetic reinforced wall with wraparound facing. Geotextiles and Geomembranes, 23 (1), 107-115.
  • Lin, H., Ling, H.I., Li, L., Collin, J.G., Leshchinsky, D., Rimoldi, P. (2013). Centrifuge modeling of gabion walls reinforced with geosynthetics. Proc. of International Symposium on Design and Practice of Geosynthetic-Reinforced Soil Structures. Bologna, Italy, 25.
  • Ling, H., Wu, M., Leshchinsky, D., Leshchinsky B. (2009). Centrifuge Modeling of Slope Instability. J. Geotech. Geoenviron. Eng., 135(6), 758-767.
  • Maccafferi (2012). Terramesh System: Galvanized and PVC Coated. Product Standard Specifications.
  • Porbaha, A., Goodings, D. (1996). Centrifuge Modeling of Geotextile-Reinforced Cohesive Soil Retaining Walls. J. Geotech. Engrg., 122(10), 840-848.
  • Raisinghani, D.V., Viswanadham, B.V.S. (2011). Centrifuge model study on low permeable slope reinforced by hybrid geosynthetics. Geotextiles and Geomembranes, 29, 567-580.
  • Sawicki, A. (1998). Theoretical analysis of centrifugal model tests on reinforced earth structures. Geotechnique, 48, 4, 563-567.
  • Viswanadham, B.V.S., Konig, D. (2009). Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements. Geotextiles and Geomembranes, 27, 77-88.
  • Zhang, W., Lai, Z., Xu, G. (2000). Centrifuge model tests of geosynthetics reinforced retaining walls. China Civil Engineering Journal, 33 (3), 84-91.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1a74733a-473a-42d0-920a-c4387e9dc373
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.