PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 75 | 10 |

Tytuł artykułu

Expression of serotonin, somatostatin, and glucagon-like peptide 1 (GLP1) in the intestinal neuroendocrine cells of pigs fed with population rye type and hybrid rye type grains

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Neuroendocrine cells (NEC) are a cell population in the gastrointestinal tract that plays a role in the regulation of the digestion process, satiety and nutrient homeostasis. NE cells express a variety of bioactive hormones that can undergo changes in response to different luminal stimuli, including multiple components, which are present in the diet. In recent years, a modern (hybrid) type of rye grain has been introduced to feed industry. The goal of the present study was to determine immunohistochemically whether the feeding of the pigs with population and hybrid rye grains may evoke adverse changes in the small and large intestines in terms of the expression of serotonin, glucagon-like peptide 1 (GLP1) and somatostatin. Feeding animals with population and hybrid rye grains resulted in a slight increase in serotonin-positive NE cells in the small intestine (but not in the large intestine). After feeding animals with population rye (but not with hybrid rye) grains, there was a decrease in the small intestine GLP1-immunoreactive NE cells was found. No changes in the expression of GLP1 were found in the large intestine of experimental animals. The numbers of somatostatin-IR NEC in the small and large intestines were not affected by feeding with either population or hybrid rye grains. In conclusion, we found that feeding pigs with hybrid and population rye grains started adaptive changes in NEC. However, those changes were not profound, which allows us to speculate that adverse effects of these rye grains have a minor (if any) impact on the gut hormone balance (and indirectly on the health status) of animals.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

75

Numer

10

Opis fizyczny

p.593-598,fig.,ref.

Twórcy

  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
  • Department of Pharmacology, Toxicology and Environmental Protection, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
autor
  • Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University in Lublin, Akademicka 19, 20-033 Lublin, Poland
autor
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
autor
  • Department of Swine and Small Animal Breeding, Faculty of Animal Breeding and Biology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland

Bibliografia

  • Amato A., Baldassano S., Liotta R., Serio R., Mulè F.: Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle. J. Endocrinol. 2014, 221, 29-37.
  • Arciszewski M. B.: Distribution of calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) immunoreactive nerve fibers in the seminal vesicle and prostate of the male sheep. Ann. Anat. 2004, 186, 83-87.
  • Bellono N. W., Bayrer J. R., Leitch D. B., Castro J., Zhang C., O’Donnell T. A., Brierley S. M., Ingraham H. A., Julius D.: Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017, 170, 185-198.
  • Bharucha A. E., Camilleri M., Burton D. D., Thieke S. L., Feuerhak K. J., Basu A., Zinsmeister A. R.: Increased nutrient sensitivity and plasma concentrations of enteral hormones during duodenal nutrient infusion in functional dyspepsia. Am. J. Gastroenterol. 2014, 109, 1910-1920.
  • Bishop A. E., Pietroletti R., Taat C. W., Brummelkamp W. H., Polak J. M.: Increased populations of endocrine cells in Crohn’s ileitis. Virchows Arch. A. Pathol. Anat. Histopathol. 1987, 410, 391-396.
  • Boros D., Fraś A.: Alkylresorcinols of cereal grains – their importance in food and feed. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 2015, 277, 7-20.
  • Chowers Y., Cahalon L., Lahav M., Schor H., Tal R., Bar-Meir S., Levite M.: Somatostatin through its specific receptor inhibits spontaneous and TNF-alphaand bacteria-induced IL-8 and IL-1 beta secretion from intestinal epithelial cells. J. Immunol. 2000, 165, 2955-2961.
  • Clarke G., Stilling R. M., Kennedy P. J., Stanton C., Cryan J. F., Dinan T. G.: Minireview: Gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221-1238.
  • Di Sabatino A., Giuffrida P., Vanoli A., Luinetti O., Manca R., Biancheri P., Bergamaschi G., Alvisi C., Pasini A., Salvatore C., Biagi F., Solcia E., Corazza G. R.: Increase in neuroendocrine cells in the duodenal mucosa of patients with refractory celiac disease. Am. J. Gastroenterol. 2014, 109, 258-269.
  • Eeden S. van, Offerhaus G. J.: Historical, current and future perspectives on gastrointestinal and pancreatic endocrine tumors. Virchows Arch. 2006, 448, 1-6.
  • El-Salhy M., Hatlebakk J. G., Gilja O. H.: Abnormalities in endocrine and immune cells are correlated in dextran‑sulfate‑sodium‑induced colitis in rats. Mol. Med. Rep. 2017, 15, 12-20.
  • El-Salhy M., Mazzawi T., Hausken T., Hatlebakk J. G.: Interaction between diet and gastrointestinal endocrine cells. Biomed. Rep. 2016, 4, 651-656.
  • Ensinck J. W., Vogel R. E., Laschansky E. C., Francis B. H.: Effect of ingested carbohydrate, fat, and protein on the release of somatostatin-28 in humans. Gastroenterol. 1990, 98, 633-638.
  • Foley K. F., Pantano C., Ciolino A., Mawe G. M.: IFN-gamma and TNF-alpha decrease serotonin transporter function and expression in Caco2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G779-G784.
  • Fothergill L. J., Furness J. B.: Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem. Cell Biol. 2018, 150, 693-702.
  • Gupta V.: Pleiotropic effects of incretins. Indian J. Endocrinol. Metab. 2012, 16 (Suppl 1), S47-S56.
  • Gustafsson B. I., Bakke I., Tømmerås K., Waldum H. L.: A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand. J. Gastroenterol. 2006, 41, 390-395.
  • Hansen L., Hartmann B., Bisgaard T., Mineo H., Jørgensen P. N., Holst J. J.: Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E1010-E1018.
  • Harris A. G.: Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut 1994, 35 (3 Suppl), S1-S4.
  • Hytting-Andreasen R., Balk-Møller E., Hartmann B., Pedersen J., Windeløv J. A., Holst J. J., Kissow H.: Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice. PLoS One 2018, 13, e0198046.
  • Klaauw A. A. van der, Keogh J. M., Henning E., Trowse V. M., Dhillo W. S., Ghatei M. A., Farooqi I. S.: High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring). 2013, 21, 1602-1607.
  • Mansour A., Hosseini S., Larijani B., Pajouhi M., Mohajeri-Tehrani M. R.: Nutrients related to GLP1 secretory responses. Nutrition 2013, 29, 813-820.
  • Mawe G. M., Hoffman J. M.: Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 473-486.
  • Mazzawi T., El-Salhy M.: Changes in duodenal enteroendocrine cells in patients with irritable bowel syndrome following dietary guidance. Exp. Biol. Med. (Maywood) 2017, 242, 1355-1362.
  • Moyana T. N., Shukoor S.: Gastrointestinal endocrine cell hyperplasia in celiac disease: a selective proliferative process of serotonergic cells. Mod. Pathol. 1991, 4, 419-423.
  • Peiris M., Aktar R., Raynel S., Hao Z., Mumphrey M. B., Berthoud H. R., Blackshaw L. A.: Effects of obesity and gastric bypass surgery on nutrient sensors, endocrine cells, and mucosal innervation of the mouse colon. Nutrients 2018, 10, pii: E1529.
  • Petersen N., Frimurer T. M., Terndrup Pedersen M., Egerod K. L., Wewer Albrechtsen N. J., Holst J. J., Grapin-Botton A., Jensen K. B., Schwartz T. W.: Inhibiting RHOA signaling in mice increases glucose tolerance and numbers of enteroendocrine and other secretory cells in the intestine. Gastroenterol. 2018, 155, 1164-1176.e2.
  • Pieszka M., Kamyczek M., Rudzki B., Łopuszańska-Rusek M., Pieszka M.: Evaluation of the usefulness of hybrid rye in feeding Polish Holstein-Friesian dairy cows in early lactation. Ann. Anim. Sci. 2015, 15, 929-943.
  • Pyarokhil A. H., Ishihara M., Sasaki M., Kitamura N.: The developmental plasticity of colocalization pattern of peptide YY and glucagon-like peptide-1 in the endocrine cells of bovine rectum. Biomed. Res. 2012, 33, 35-38.
  • Sharma H. R., Ingalls J. R., McKirdy J. A., Sanford L. M.: Evaluation of rye grain in the diets of young Holstein calves and lactating dairy cows. J. Dairy Sci. 1981, 64, 441-448.
  • Sharma R., Schumacher U.: The diet and gut microflora influence the distribution of enteroendocrine cells in the rat intestine. Experientia 1996, 52, 664-670.
  • Spiller R.: Serotonin and GI clinical disorders. Neuropharmacol. 2008, 55, 1072-1080.
  • Tropp M. I., Sinilova N. G.: [On the content of alkaloids in domestic wild rye ergot]. Med. Prom. SSSR 1961, 8, 10-14.
  • Viveros A., Centeno C., Brenes A., Canales R., Lozano A.: Phytase and acid phosphatase activities in plant feedstuffs. J. Agric. Food Chem. 2000, 48, 4009-4013.
  • Ward A. T., Marquardt R. R.: Antinutritional activity of a water-soluble pentosan-rich fraction from rye grain. Poult. Sci. 1987, 66, 1665-1674.
  • Wu H., Denna T. H., Storkersen J. N., Gerriets V. A.: Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2018, doi: 10.1016/j.phrs.2018.06.015.
  • Wu T., Rayner C. K., Young R. L., Horowitz M.: Gut motility and enteroendocrine secretion. Curr. Opin. Pharmacol. 2013, 13, 928-934.
  • Yue Y., Guo Y., Yang Y.: Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers. Amino Acids 2017, 49, 1227-1236.
  • Zacharko-Siembida A., Valverede Piedra J. L., Arciszewski M. B.: Changes in expression of calbindin 28 kDa in the small intestine of red kidney bean (Phaseolus vulgaris) lectin-treated suckling piglets. Pol. J. Vet. Sci. 2013, 16, 201-209.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1a21906b-63b8-442e-bbc6-a1ebe6e8ad4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.