Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 18 | 1[192] |
Tytuł artykułu

Physical characteristics of grains of maize pre-sowing treated by electromagnetic fields

Treść / Zawartość
Warianty tytułu
Cechy fizyczne ziarna kukurydzy z roślin poddanych działaniu pola elektromagnetycznego przed siewem
Języki publikacji
Electromagnetic fields have many applications in agriculture, but much still remains to be studied to provide scientific evidence of its potential use as an alternative for improvement of food quality from plants whose seed was irradiated, especially in the physical characteristics of the product. In this study we investigated the effects of the electromagnetic fields on the physical quality of maize grain. Twelve treatments were evaluated from a combination of two maize hybrids (San Juan and San Jose) and five times of exposure to electromagnetic field (3, 6, 9, 12 and 15 minutes) plus a control (no electromagnetic treatment) in a design of randomised complete blocks with four replications. Electromagnetic treatment of the hybrid maize seeds (San Juan and San Jose), applied as a presowing treatment, modifies the physical characteristics of maize grains. It was possible to observe that there were significant differences (p≤0.01) between the experimental treatments and between the hybrids in their grain length (LG), grain width (GW) and 1000-grain weight (TGW). The hectolitric weight (HW) of the hybrids was between 69.05 and 68.98 kg hL-1, respectively. These results could have an impact on the process and quality of the tortilla that is consumed by the population; this is a function of time of exposure to electromagnetic treatment.
Pola elektromagnetyczne mają wiele zastosowań w rolnictwie, lecz konieczne są dalsze badania aby uzyskać naukowe dowody na ich potencjalne wykorzystanie jako alternatywnej metody poprawy jakości żywności otrzymywanej z roślin, których nasiona poddano ich wpływowi – szczególnie w odniesieniu do ich cech fizycznych. W prezentowanej pracy badano wpływ pola elektromagnetycznego na fizyczne cechy ziarna kukurydzy. Badania obejmowały dwanaście kombinacji – dwie hybrydy kukurydzy (San Juan and San Jose) i pięć czasów działania polem elektromagnetycznym (3, 6, 9, 12 i 15 minut) plus kombinacja kontrolna (nasiona bez traktowania polem elektromagnetycznym). Doświadczenie założono metodą bloków losowych w czterech powtórzeniach. Przedsiewne działanie polem elektromagnetycznym na nasiona hybryd kukurydzy (San Juan and San Jose) modyfikuje cechy fizyczne otrzymanego ziarna. Zaobserwowano istotne różnice (p≤0,01) pomiędzy wariantami doświadczenia oraz pomiędzy hybrydami kukurydzy w takich cechach jak długość ziaren (LG), szerokość (GW) i masa 1000 ziaren (TGW). Masa hektolitrowa (HW) ziarna tych hybryd zawierała się w przedziale od 69,05 do 68,98 kg hL-1. Otrzymane wyniki mogą mieć znaczenie w procesie produkcji oraz jakości tortilli.
Opis fizyczny
  • Instituto Politecnico Nacional, SEPI-ESIME, Zacatenco, Unidad Profesional "Adolfo Lopez Mateos", Av. Instituto Politecnico Nacional s/n, Unidad Profesional, Colonia Lindavista, Delegacion Gustavo A. Madero, Mexico, D.F. C.P. 07738
  • Barbosa C.G.V., Ortega R.E., Juliano P., Hong Y., 2005. Food powders, Physical properties, processing and functionality. Kluwer Academic/plenum publishers, New York, Boston, Dordrecht, London, Moscow.
  • Bujak K., Frant M., 2009. Influence of presowing seed stimulation with magnetic Field on spring wheat yielding (in Polish). Acta Agrophysica, 14(1), 19-29.
  • Cakmak T., Rahmi D., Serkan E., 2010. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics, 31, 120-129.
  • Chen Y.P., Jia J.F., Yue M., 2010. Effect of CO2 Laser Radiation on Physiological Tolerance of Wheat Seedlings Exposed to Chilling Stress. Photochemistry and Photobiology, 86, 600-605.
  • CONAPO (National Population Council), 2009: November, Available
  • Coutiño E.B., Vázquez C. G., Torres M. B., Salinas M. Y., 2008. Grain, tortillas and snacks quality of two corn varieties of the comiteco race (in Spanish). Revista Fitotecnia Mexicana, 31, 9-14.
  • Dominguez P.A., Hernandez A.C., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R., Martínez O.E., 2010. Influences of the electromagnetic field in maize seed vigor (in Spanish). Revista Fitotecnia Mexicana, 33, 183-188.
  • Dziwulska-Hunek A, Kornarzyñski K., Matwijczuk A., Pietruszewski S., Szot B., 2009. Effect of laser and variable magnetic field simulation on amaranth seeds germination. International Agrophysics, 23, 229-235.
  • FAO (Food and Agriculture Organization of the United Nations), 2009: FAOSTAT (FAO Statistical Databases) Agriculture, Fisheries, Forestry, Nutrition. November, de-fault.aspx/. Rome, Italy
  • FAO (Food and Agriculture Organization), 2010: The spectrum of malnutrition. November, http://www.
  • FAO (Food and Agriculture Organization). 2007: FAOSTAT (FAO Statistical Databases) Agriculture, Fisheries, Forestry, Nutrition. November, Rome, Italy.
  • Galland P., Pazur A., 2005. Magnetoreception in plants. J. Plant Res., 118, 371-389.
  • Hernandez A.C., Carballo C.A., Dominguez P.A., 2007. Effect produced by treatment magnetic in maize seeds (in Spanish). Tecnologia Quimica, Special edition, 115-117.
  • Hernandez A.C., Dominguez P.A., Carballo C.A., Cruz O.A., Ivanov R., López B.J.L., Valcarcel M.J.P., 2009b. Alternating magnetic field irradiation effects on three genotype maize seed field performance. Acta Agrophysica, 170, 7-17.
  • Hernández A.C., Domínguez P.A., Cruz O.A., Ivanov R., Carballo C. A., Zepeda B.R., 2010. Laser in agriculture. Int. Agrophysics, 24, 407-422.
  • Hernandez A.C., Domínguez P.A., Cruz-Orea A., Ivanov R., Carballo C.A., Zepeda B.R., Galindo S.L., 2009a. Laser irradiation effects on field performance of maize seed genotypes. Int. Agrophysics, 23, 327-332.
  • INEGI (National Institute of Statistics, Geography and Informatics), 2009: November, http://www.inegi. (in Spanish), Mexico.
  • Jaśkiewicz B., 2009. Yielding of triticale variety Woltario depending on sowing density and nitrogen application method (in Polish). Acta Agrophysica, 3, 705- 712.
  • Majid R., Kashani1 A., Zare-Feizabadi A., Koocheki A., Nassiri-Mahallati, 2010. Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Australian Journal of Crop Science, 4, 363-368.
  • Melesio C.J.L., Preciado O.R.E., Terrón I.D.,Vázquez C.M.G., Herrera M.P., Amaya G.C.A, Serna S.S.O., 2008. Production potential and nutritional value physical properties of hybrid high quality protein maize (in Spanish). Agricultura Técnica en México, 34 , 225-233.
  • Moon J.D., Chung H.S., 2000. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. Journal of Electrostatics, 48, 103-114.
  • Nechitailo G., Gordeev A., 2004. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors. Advances in Space Research, 34, 1562-1565.
  • Nimmi V., Madhu G., 2009. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum. L.). Int. Agrophysics, 23, 195-198.
  • NMX-FF-034/1-SCFI, Standard Destined to Mexican Maize Nixtamalization Process, 2002. Non-industrialized food products for human consumption-grain white corn for tortillas alkaline process for corn and corn products nixtamalized . Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) (in Spanish). México, D. F.
  • OECD (Organization for Economic Cooperation and Development), 2010. Obesity and the economics prevention. November, /46077041.pdf.
  • Perveen R, Ali Q, Ashraf M., Al-Qurainy F., Jamil Y., Ahmad M.R., 2010. Effects of Different Doses of Low Power Continuous Wave He-Ne Laser Radiation on Some Seed Thermodynamic and Germination Parameters, and Potential Enzymes Involved in Seed Germination of Sunflower (Helianthus annuus L.). Photochemistry and Photobiology, 86, 1050-1055.
  • Pietruszewski S., Muszyński S., Dziwulska A., 2007. Electromagnetic fields and electromagnetic radiation as non-invasive external simulations for seeds (selected methods and responses). Int. Agrophysics, 21, 95-100.
  • Rooney, L. W., Suhendro E. L., 2001. Food quality of corn. In: Lusas, E. and Rooney, L. W. (eds.) Snack foods processing. Technomic Publishing. Lancaster, PA, USA, 37-72.
  • Rooney, L. W., Suhendro, E. L., 1999. Perspectives on nixtamalization (alkaline cooking) of maize for tortillas and snacks. Cereal Foods World, 44, 466-470.
  • Salinas M. Y., Arellano J.L., 1989. Nixtamalera and tortilla quality of maize hybrids with different endosperm type (in Spanish). Rev. Fitotec. Mex, 12, 129-135.
  • SAS, 2009. Statistical Analysis System for Windows. Release 8.01. SAS Institute Inc., Cary, N. C. USA.
  • Seifi M.R., Alimardani R., 2010. Comparison of moisture-dependent physical and mechanical properties of two varieties of corn (Sc 704 and Dc 370). Australian Journal of Agricultural Engineering, 1, 170-178.
  • SIAP (Agrifood and Fishery Information Service), SAGARPA, 2010a: http://www.campomexicano. (in Spanish), Mexico.
  • SIAP (Agrifood and Fishery Information Service), SAGARPA, 2010b. November, , (in Spanish), Mexico.
  • Soliman A.S.H., Harith M.A., 2010. Effects of laser biostimulation on germination of acacia farnesiana (L.) Willd. Acta Horticulturae (ISHS), 854,41-50.
  • Sujak A., Dziwulska-Hunek A., Kornarzyński K., 2009. Compositional and nutritional values of amaranth seeds after pre-sowing He-Ne laser light and alternating magnetic field treatment. Int. Agro-physics, 23, 81-86.
  • Thomas M.S., Wolever D.M., 2003. Carbohydrate and the regulation of blood glucose and metabolism, Nutrition Review, 61, 40-48.
  • Torres T. F, 2000. The power of Mexicans at the end of the millennium: from diversity to regional homogeneity . Notes, analysis and information magazine of the National Institute of Statistics, Geography and Informatics (INEGI) (in Spanish), 10, 47-58.
  • Ueno S., Shigemitsu T., 2006. Bioengineering and Biophysical Aspects of Electromagnetic Fields. Taylor & Francis Group.
  • Vashisth Ananta, Nagarajan Shantha, 2008. Exposure of Seeds to Static Magnetic Field Enhances Germination and Early Growth Characteristics in Chickpea (Cicer arietinum L.). Bioelectromagnetics, 29,571-578.
  • Vasilevsky G., 2003. Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian J. Plant Physiol., 179-186.
  • Vázquez C. M., G., L. Guzmán B., J. L. Andrés G., F. Márquez S., y J. Castillo M., 2003. Calidad de grano y tortillas de maíces criollos y sus retrocruzas. Rev. Fitotec. Mex., 26, 231-238. mediacentre/factsheets/fs311/es/index.html
  • WHO (World health organization), 2010, Obesity and overweight. December, .
  • Yano A., Ohashi Y., Hirasaki T., Fujiwara K., 2004. Effects of a 60 Hz Magnetic Field on Photosynthetic CO2 uptake and Early Growth of Radish Seedlings. Bioelectromagnetics, 25, 572-581.
  • Zepeda B. R., Carballo C.A. Muñoz O. A., Mejía C. J.A., Figueroa S.C.B., González C.V., 2007. Nitrogen fertilization and physical characteristics, structural and quality of nixtamalgrain tortilla corn hybrids (in spanish). Agricultura Téc. Méx. 33, 17-24.
  • Zepeda B.R., Carballo C.A., Hernández A.C., 2009b. Genotype-environment interaction in structure and nixtamal-tortilla quality of kernel in maize hybrids (in Spanish). Agrociencia, 43, 695-706.
  • Zepeda B.R., Carballo C.A., Muñoz O A., Mejía C.J.A., Figueroa S C.B.., González C.V., Hernández A.C., 2009a. Protein, tryphtophan, and structural kernel components in Corn (Zea mays L.) Hybrids cultivated under fertirrigation (in Spanish). Agrociencia, 43, 143-152.
  • Zepeda B.R., Hernández A.C., Domínguez P.A., Cruz O.A., Godina N.J.J., Martínez O.E., 2010. Electromagnetic field and seed vigour of corn hybrids. Int. Agrophys., 24, 329-332.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.