PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 68 | 2 |

Tytuł artykułu

A morphometric comparative study of the lateral geniculate body in selected placental mammals: the common shrew, the bank vole, the rabbit, and the fox

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The lateral geniculate body (LGN) was morphometrically examined and compared in representatives of four mammalian orders (Insectivora, Rodentia, Lagomorpha, and Carnivora). In each studied species, the lateral geniculate body was divided into two distinct parts: the dorsal nucleus (LGNd) and the ventral nucleus (LGNv). The lateral geniculate body of the common shrew and the bank vole are very similar in appearance and nuclear pattern. The dorsal and ventral nuclei of these two species also have the most similar statistical characteristics. The lateral geniculate body of the fox has the most complicated morphology and multilayered structure. A significant disproportion was observed between the sizes of both geniculate nuclei in the fox, where the dorsal nucleus definitely surpassed the ventral nucleus in terms of volume. With the exception of the fox, the neuronal density of the LGN nuclei was negatively correlated with the volumes of the LGN. The mean neuronal size of the LGNd and LGNv, which was the resultant of the length, width, area, and circumference of the soma, grew correlatively to the volumes of these nuclei. In all examined species, somas of the LGNd neurons are distinctly larger and have more similar shapes than the LGNv perikarya. In addition, the numerical density of neurons in the ventral nucleus is significantly higher than in the dorsal nucleus. All these morphometric parameters clearly differentiate the LGNd from the LGNv (Folia Morphol 2009; 68, 2: 70–78).

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

68

Numer

2

Opis fizyczny

p.70-78,fig.,ref.

Twórcy

autor
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland
autor
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland
autor
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland
autor
  • Department of Comparative Anatomy, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10–727 Olsztyn, Poland

Bibliografia

  • 1. Babb RS (1980) The pregeniculate nucleus of the monkey (Macaca mulatta). I. A study at the light microscopy level. J Comp Neurol, 190: 651–672.
  • 2. Blasco B, Avendano C, Cavada C (1999) A stereological analysis of the lateral geniculate nucleus in adult Macaca nemestrina monkeys. Vis Neurosci, 16: 933–941.
  • 3. Boire D, Théoret H, Ptito M (2002) Stereological evaluation of neurons and glia in the monkey dorsal lateral geniculate nucleus following an early cerebral hemispherectomy. Exp Brain Res, 142: 208–220.
  • 4. Brauer K, Winkelmann E, Nawka S, Strnad W (1982) Comparative volumetric investigations on the lateral geniculate body of mammals. Z Mikrosk Anat Forsch, 96: 400–406.
  • 5. Conley M, Birecree E, Casagrande VA (1985) Neuronal classes and their relation to functional and laminar organization of the lateral geniculate nucleus: a Golgi study of the prosimian primate, Galago crassicaudatus. J Comp Neurol, 242: 561–583.
  • 6. Conley M, Friederich-Ecsy B (1993) Functional organization of the ventral lateral geniculate complex of the tree shrew (Tupaia belangeri): II. Connections with the cortex, thalamus, and brainstem. J Comp Neurol, 328: 21–42.
  • 7. DeVito JL, Graham J, Sackett GP (1989) Volumetric growth of the major brain divisions in fetal Macaca nemestrina. Hirnforsh J, 30: 479–487.
  • 8. Edelstein K, Amir S (1999) The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J Neurosci, 19: 372–380.
  • 9. Fritschy JM, Garey LJ (1986) Postnatal development of quantitative morphological parameters in the lateral geniculate nucleus of the marmoset monkey. Dev Brain Res, 30: 157–168.
  • 10. Goel N, Governale MM, Jechura TJ, Lee TM (2000) Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res, 877: 306–313.
  • 11. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev, 21: 705–727.
  • 12. Hassler R, Hajdu F (1985) Architectonic differentiation of the lateral geniculate body of the cat. J Hirnforsch, 26: 245–257.
  • 13. Hickey TL, Spear PD (1976) Retinogeniculate projections in hooded and albino rats: An autoradiographic study. Exp Brain Res, 24: 523–529.
  • 14. Higo S, Kawamura S (1999) Zonal organization of the ventral lateral geniculate nucleus in the cat: cholera toxin mapping. J Comp Neurol, 415: 17–32.
  • 15. Hilbig H, Stubbe A, Winkelmann E (1989) Volumetric and golgi studies of the corpus geniculatum laterale pars dorsalis of Alticola stoliczkanus barakshin and Alticola argentatus semicanus. Z Mikrosk Anat Forsch, 103: 14–20.
  • 16. Kowiański P, Dziewiątkowski J, Kowiańska J, Moryś J (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol, 53: 44–54.
  • 17. Livingston CA, Fedder SR (2003) Visual-ocular motor activity in the macaque pregeniculate complex. J Neurophysiol, 90: 226–244.
  • 18. Livingston CA, Mustari MJ (2000) The anatomical organization of the macaque pregeniculate complex. Brain Res, 876: 166–179.
  • 19. Madarász M, Gerle J, Hajdu F, Somogyi Gy, Tömböl T (1978) Quantitative histological studies on the lateral geniculate nucleus in the cat II. Cell numbers and densities in the several layers. J Hirnforsch, 19: 159–164.
  • 20. McConnell SK, Le Vay S (1986) Anatomical organization of the visual system of the mink, Mustela vison. J Comp Neurol, 250: 109–132.
  • 21. Murphy PC, Duckett SG, Sillito AM (2000) Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci, 20: 845–853.
  • 22. Najdzion J, Wasilewska B, Szteyn S, Robak A, Bogus-Nowakowska K, Równiak M (2006) The neuronal structure of the dorsal nucleus of the lateral geniculate body in the common shrew (Sorex araneus) and the bank vole (Clethrionomys glareolus): Golgi and Nissl studies. Folia Morphol, 65: 352–358.
  • 23. Nakamura H, Itoh K (2004) Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat. J Comp Neurol, 473: 439–462.
  • 24. Narkiewicz O, Dziewíątkowski J, Moryś J (1994) Lateral tuberal nucleus in man and macaca comparative morphometric investigations. Folia Morphol, 53: 1–12.
  • 25. Niimi K, Kanaseki T, Takimoto T (1963) The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals. J Comp Neurol, 121: 313–324.
  • 26. Równiak M, Robak A, Szteyn S, Bogus-Nowakowska K, Wasilewska B, Najdzion J (2007) The morphometric study of the amygdala in the rabbit. Folia Morphol, 66: 44–53.
  • 27. Tigges J, Tigges M (1987) Termination of retinofugal fibers and lamination pattern in the lateral geniculate nucleus of the gibbon. Folia Primatol, 48: 186–194.
  • 28. Vrang N, Mrosovsky N, Mikkelsen JD (2003) Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull, 59: 267–288.
  • 29. West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol, 296: 1–22.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1a08fe5e-4ce5-4c19-85e8-78a9599874ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.