PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Culture-dependent analysis of 16S rRNA sequences associated with the rhizosphere of Lemna minor and assessment of bacterial phenol-resistance: plant/bacteria system for potential bioremediation - part II

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this work, we demonstrate that the rhizosphere of common duckweed (Lemna minor) is inhabited with various phenol-resistant bacterial strains. Based on 16S rRNA sequencing, we have identified 60 rhizosphere-associated bacterial isolates belonging to 10 different bacterial genera (Pseudomonas, Hafnia, Serratia, Enterobacter, Micrococcus, Stenotrophomonas, Xanthomonas, Bacillus, Staphylococcus and Klebsiella). All isolates have been tested for phenol resistance and ability to utilize phenol as the sole carbon source. 70% of all isolates survived high doses of phenol (≥200 mg/L) and at least 27% can be potentially acclimatized by gradual increase of phenol concentration. Finally, based on high phenol resistance, ability to utilize phenol as the sole carbon source and documented low pathogenicity, we propose 5 strains as potentially excellent candidates for bioremediation. These 5 strains taxonomically correspond to Klebsiella sp., Serratia sp., and Hafnia sp., respectively. To the best of our knowledge, this is the first attempt to assess decontamination capacity of Serratia nematodiphila and Hafnia sp. in the context of bioremediation of phenol-contaminated aqueous media. Although additional analyses are needed, interaction between the common duckweed and the selected bacterial strains may be utilized in future bioremediation strategies.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.811-822,fig.,ref.

Twórcy

autor
  • Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade, Serbia
autor
  • Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Despota Stefana 142 Street, Belgrade, Serbia
autor
  • Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Despota Stefana 142 Street, Belgrade, Serbia
  • Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, Serbia
autor
  • Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, Serbia
autor
  • Mining and Metallurgy Institute, Zeleni Bulevar 35, 19219 Bor, Serbia
autor
  • Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, Serbia

Bibliografia

  • 1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Phenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Downloaded from: www.atsdr.cdc.gov/toxprofiles/tp.asp?id=148&tid=27. 2008.
  • 2. PRADEEP N.V., ANUPAMA S., NAVYA K., ET AL. Biological removal of phenol from wastewaters: a mini review. Appl. Water Sci. 5: 105, 2015.
  • 3. HARBOTTLE M., LEAR G. Bioremediation: Current Research and Emerging Technologies. Norfolk, UK: Caister: Academic Press, 2016.
  • 4. Oller I., Malato S., Sánchez-Pérez J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination - a review. Sci. Total. Environ. 409 (20), 4141, 2011.
  • 5. RUSIN M., GOSPODAREK J., NADGÓRSKA-SOCHA A. The Effect of Petroleum-Derived Substances on the Growth and Chemical Composition of Vicia faba L. Pol. J. Environ. Stud. 24 (5), 2157, 2015.
  • 6. de la Cruz F., Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. Review. 8 (3), 128, 2000.
  • 7. TAVITA K., MIKKEL K., TARK-DAME M., JERABEK H., TERAS R., SIDORENKO J., TEGOVA R., TOVER A., DAME R.T., KIVISAAR M. Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat. Res. 737 (1-2), 12, 2012.
  • 8. Copley S.D. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem. Sci. Review. 25 (6), 261, 2000.
  • 9. SILVA C.C., HAYDEN H., SAWBRIDGE T., MELE P., DE PAULA S.O., SILVA L.C., VIDIGAL P.M., VICENTINI R., SOUSA M.P., TORRES A.P., SANTIAGO V.M., OLIVEIRA V.M. Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater. PLoS One. 8 (4), e61811, 2013.
  • 10. BASILE L.A., ERIJMAN L. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading. FEMS Microbiol. Ecol. 73 (2), 336, 2010.
  • 11. Kopmann C., Jechalke S., Rosendahl I., Groeneweg J., Krögerrecklenfort E., Zimmerling U., Weichelt V., Siemens J., Amelung W., Heuer, H., Smalla K. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol. Ecol. 83 (1), 125, 2013.
  • 12. Chen W.M., Tang Y.Q., Mori K., Wu X.L. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aqua Biol. 15 (2), 99, 2012.
  • 13. GAŁĄZKA A., KRÓL M., PERZYŃSKI A. The Efficiency of Rhizosphere Bioremediation with Azospirillum sp. and Pseudomonas stutzeri in Soils Freshly Contaminated with PAHs and Diesel Fuel. Pol. J. Environ. Stud. 21 (2), 345, 2012.
  • 14. KRISTANTI R.A., KANBE M., TOYAMA T., TANAKA Y., TANG Y., WU X., MORI K. Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza. J. Environ. Sci. 24 (5), 800, 2012.
  • 15. TOYAMA T., SEI K., YU N., KUMADA H., INOUE D., HOANG H, SODA S., CHANG Y.C., KIKUCHI S., FUJITA M., IKE M. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol. Water Res. 43 (15), 3765, 2009.
  • 16. Yamaga F., Washio K., Morikawa M. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ. Sci. Technol. 44 (16), 6470, 2010.
  • 17. Bertani G. Lysogeny at Mid-Twentieth Century: P1, P2, and Other Experimental Systems. J. Bacter. 186 (3), 595, 2004.
  • 18. Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M.C. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol. 66 (12), 5213, 2000.
  • 19. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Bio. Evo. 4, 406, 1987.
  • 20. Tamura K., Nei M., and Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA). 101 (19), 11030, 2004.
  • 21. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Bio. Evo. 33, 1870, 2016.
  • 22. PIETRINI F., DI BACCIO D., ACEÑA J., PÉREZ S., BARCELÓ D., ZACCHINI M. Ibuprofen exposure in Lemna gibba L.: Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium. J. Hazard. Mat. 300, 189, 2015.
  • 23. HADIA F., AMBREEN A. How Chromium-Resistant Bacteria Can Improve Corn Growth in Chromium-Contaminated Growing Medium. Pol. J. Environ. Stud. 25 (6), 2357, 2016.
  • 24. Long H.H., Sonntag D.G., Schmidt D.D., Baldwin, I. T. The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytologist. 185 (1), 554, 2010.
  • 25. NEAL A.L., AHMAD S., GORDON-WEEKS R., TON J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One. 7 (4), e35498, 2012.
  • 26. Doornbos R.F., van Loon L.C., Bakker P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 32 (1), 227, 2012.
  • 27. Plan of air-quality in agglomeration Belgrade – city of Belgrade. Available at: www.beograd.rs/images/data/8e332b627c975c8c20bd56adc3dd5c0b_5051701029.pdf. 23, Serbia, 2016.
  • 28. DASTAGER S.G., DEEPA C.K., PANDEY A. Isolation and characterization of high-strength phenol-degrading novel bacterium of the Pantoea genus. Bioremed. J., 13 (4), 171, 2009.
  • 29. Wu Z., Peng Y., Guo l., Li c. Root colonization of encapsulated Klebsiella oxytoca RS-5 on cotton plants and its promoting growth performance under salinity stress. Europ. J. Soil Biol. 60, 81, 2014.
  • 30. SINGH R., JHA P., JHA P.J. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J. Plant Physiol. 184, 57, 2015.
  • 31. Dastager S.G., Deepa C.K., Pandey A. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J. Microbiol. Biotechnol. 27 (2) 259, 2011.
  • 32. Singh S., Singh B.B., Chandra R. Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385). World J. Microbiol. Biotechnol. 25 (1), 1821, 2009.
  • 33. HUYS G., CNOCKAERT M., ABBOTT S.L., JANDA J.M., VANDAMME P. Hafnia paralvei sp. nov., formerly known as Hafnia alvei hybridization group 2. Int. J. Syst. Evol. Microbiol. 60 (8), 1725, 2009.
  • 34. Viana E.S., Campos M.E., Ponce A.R., Mantovani H.C., Vanetti M.C. Biofilm formation and acyl homoserine lactone production in Hafnia alvei isolated from raw milk. Biol. Res. 42 (4), 427, 2009.
  • 35. Johnston-Monje D., Raizada M.N. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology. PLoS ONE. 6 (6), 203, 2011.
  • 36. Berg G., Eberl L., Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. Review. 7 (11), 1673, 2005.
  • 37. Zhang C.X., Yang S.Y., Xu M.X., Sun J., Liu H., Liu J.R., Zhang K.Y. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). Internat. J. Syst. and Evo. Microbiol. 59 (7), 1603, 2009.
  • 38. Neal A.L., AhmaD S., Gordon-Weeks R., Ton J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE. 7 (4), 1, 2012.
  • 39. HASAN S.A., JABEEN S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotech, Biotech. Equip. 29 (1), 45, 2015.
  • 40. KURZBAUM E., KIRZHNER F., SELA S., ZIMMELS Y., ARMON R. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water Research, 44 (17), 5021, 2010.
  • 41. GU Q., WU Q., ZHANG J., GUO W., WU H., SUN M. Community analysis and recovery of phenol-degrading bacteria from drinking water biofilters. Front. Microbiol. 7, 495, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-199cc7f4-d397-49dc-af9d-57edba83d69b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.