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Abstract: Using support vector regression to 
predict direct runoff, base fl ow and total fl ow 
in a mountainous watershed with limited data 
in Uttaranchal, India. In the ecologically sensi-
tive Himalayan region, land transformations and 
utilization of natural resources have modifi ed 
water fl ow patterns. To ascertain future sustain-
able water supply it is necessary to predict water 
fl ow from the watersheds as affected by rainfall 
and morphological parameters. Although such 
predictions may be made using available process-
-based models, in mountainous and hilly areas it 
is extremely diffi cult to determine the numerous 
parameters needed to run such models, thus limit-
ing their applicability. Artifi cial intelligence (AI) 
based models are a possible alternative in such 
circumstances. In this study an AI technique, sup-
port vector machines (SVM), was used for mod-
eling the rainfall-runoff relationship from three 
hilly watersheds in the state of Uttaranchal, India. 
Different SVM models were developed to predict 
direct runoff, base fl ow, and total fl ow based on 
the daily rainfall, runoff, and morphological pa-
rameters collected from each watershed. The re-
sults confi rm the potential of SVM models in the 
prediction of runoff, base fl ow, and total fl ow in 
hilly areas. 

Key words: support vector machine, artifi cial in-
telligence, runoff, base fl ow, total fl ow, Himala-
yas, watersheds

INTRODUCTION

In the Himalayan region, agricultural ac-
tivities are the main source of the popu-

lation’s livelihood. While these activi-
ties and other land uses have supported 
the population they have also placed 
signifi cant pressure on the land, water, 
and other natural resources creating eco-
logical imbalances. This poses a serious 
threat to the sustainable development of 
the region’s water resources (Samra et al. 
1999). Given this situation, it is neces-
sary to understand the water fl ow behav-
iour in this region.

Rainfall-runoff relationships are 
a complex hydrological phenomenon 
infl uenced by temporal and spatial vari-
ability in the watershed characteristics, 
uncertainty in rainfall patterns, and 
changes in soil cover and morphological 
parameters (Tokar and Johnson 1999). 
To simulate the behaviour of this com-
plex system several conceptual process-
-based models have been developed to 
mathematically simulate rainfall-runoff 
processes on a watershed scale. These 
models are constructed to approximate 
the general internal sub-process and 
physical mechanisms that govern the hy-
drologic cycle, and are based on impor-
tant hydrological processes. However, 
it is diffi cult to translate these processes 
into mathematical form and in practical 
situations such models may not be ac-
curate at prediction as they may require 
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several input parameters that cannot be 
accurately determined due to spatial and 
temporal variability. In addition, in hilly 
regions it is often extremely diffi cult to 
collect information due to problematic 
topography. In such situations, it may be 
preferable to consider a direct mapping 
between the readily measurable inputs 
and outputs by implementing a simpler 
data driven model with little considera-
tion of the complex processes. 

Artifi cial intelligence (AI) methods 
such as artifi cial neural network (ANN) 
models may be used in runoff prediction 
without prior knowledge of the actual 
complex processes involved. A number 
of researchers have used ANN models 
for studying rainfall-runoff relationships 
and found promising results compared to 
conceptual models (Smith and Eli 1996; 
LeRoy et al. 1996; Tokar and Johnson 
1999; Gautam et al. 2000; Dibike et al. 
2001; Jain and Prasad Indurthy 2003; 
Castellano-Méndez et al. 2004; Nils-
son et al. 2005; Adamowski 2008; Ada-
mowski and Sun 2010). Support vector 
machines (SVM) are another AI method 
that has recently been employed for 
solving hydrological problems. Mukher-
jee et al. (1997) applied SVM regression 
on chaotic time series and compared the 
results with those obtained with different 
prediction methods such as polynomial, 
rational, local polynomial, multi-quad-
rics radial basis functions and neural 
networks. They reported that SVM pro-
vided signifi cantly better results as com-
pared to other methods. Dibike et al. 
(2001) developed both ANN and SVM 
to predict stream fl ow discharge at the 
watershed level using daily rainfall and 

evaporation as inputs, reporting a 15% 
increase in accuracy of runoff estima-
tion with the SVM model over the ANN 
model. Bray and Han (2004) explored 
the applicability of the SVM model for 
fl ood forecasting, concentrating on de-
termining a suitable model structure and 
appropriate parameter values for rain
-fall-runoff modeling. They addressed 
the complexity of the SVM optimiza-
tion with manual based operation of the 
method and concluded that for appropri-
ate and effective application of SVM in 
rainfall-runoff modeling more research 
is needed. Asefa et al. (2005) used SVM 
models to predict at seasonal and hourly 
time scales, reporting promising SVM 
model performance. Behzad et al. (2009) 
compared SVM against ANN and ANN-
-GA models and reported the prediction 
accuracy of SVM to be as good as or bet-
ter than those models.  Wang et al. (2009) 
developed SVM and three other artifi cial 
intelligence models for the same data set, 
comparing their predictive ability and re-
porting strong predictive accuracy from 
the SVM model.  

The overall goal of this paper is to in-
vestigate the applicability of SVMs in the 
prediction of runoff, base fl ow, and total 
fl ow for hilly watersheds. Three small 
watersheds in the Uttaranchal state of 
India, located in the mid-Himalayan re-
gion, were selected and their rainfall and 
morphological data used to build and test 
the models. The data for the three water-
sheds were randomized for training and 
testing, thus building models that could 
generalize predictions for similar geo-
graphic/climatic watersheds.
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MATERIAL AND METHODS

Site description and data

The study data for this research were 
three watersheds located in the hilly ter-
rain of Uttaranchal, India. The Central 
Soil and Water Conservation Research 
and Training Institute in Dehradun, Ut-
taranchal recorded the necessary water-
shed data. The three watersheds have 
been denoted as WS1, WS2 and WS3 
with areas of 255, 52 and 163 ha, respec-
tively. All three watersheds have vary-
ing morphological characteristics with 
similar steep slopes of 62–66%. WS1 is 
predominantly mixed forest and scrub, 
WS3 is mainly a forested watershed, 
while WS2 consists mainly of agricul-
tural land. More detailed information 
on these watersheds is given in Table 1. 
Total fl ow of all three watersheds was re-
corded at the outlet with runoff and base 
fl ow computed from total fl ow. Data 

were recorded on a daily basis for the 
three-year period between July 1, 2001 
and June 30, 2004.

Model description

SVMs are based on Vapnik’s statistical 
learning theory (Vapnik 1995). Let us 
consider a simple problem where the 
data set has a linear relationship with M 
observations. Each observation consists 
of a pair: a vector xi ∈ Rn; i = 1, ..., M, 
and the corresponding response variable 
yi. The fi nal objective of SVM regres-
sion is to develop a linear function that 
can make the best approximation of the 
dependent response variable. The func-
tion can be formulated as follows:

y = f(x) = < w·x > + b (1)

where:
w, b – regression parameters, 
< w·x > – the dot product of w and x.

TABLE 1. General characteristics of the three Sainji watersheds

Category Watershed characteristics WS1 WS2 WS3

General features
area [ha] 255 52 163
length [m] 2,950 1,360 2,100
relief [m] 1,020 635 870

Shape indicators
circulatory ratio [-] 0.553 0.704 0.705
compactness coeffi cient [-] 1.34 1.19 1.18
elongation ratio [-] 0.610 0.598 0.686

Drainage pattern

drainage density [km/km2] 2.76 3.83 2.2
time of concentration [min] 14 6.76 9.86
length of streams [m] 7,050 2,010 3,595
main channel length [m] 2,950 1,360 2,100

Landuse pattern
agriculture [%] 16.55 22.94 14.87
forest [%] 36.53 0.64 54.01
scrubs [%] 46.92 76.42 29.12

Hydrologic soil 
cover complex weighted curve number 64.99 69.57 62.57
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The optimal regression function can 
be obtained, according to Gunn (1998) 
and Cristianini and Shawe-Taylor (2000), 
by minimizing a function, Ψ, as follows:

minimize

 (2)

such that 

where:
C – regularization constant, 

 – slack variables that represent 
the upper and lower constraint on the re-
gression function. 

To optimize this function SVM re-
gression uses a loss function that shows 
the maximum allowed deviation of the 
predicted values from the measured one. 
Some of the commonly used loss func-
tions are Quadratic, Laplace, Huber, and 
ε-insensitive (Gunn 1998). Among these, 
the ε-insensitive loss function was pro-
posed by Vapnik (1995) as a robust loss 
function to reduce sensitivity to the out-
liers by focusing on optimizing a bound 
around the regression function. For this 
study, the ε-insensitive loss function was 
selected.  A SVM regression model based 
on this function calculates the difference 
between the predicted and the actual val-
ues, and if the differences are less than ε, 
the regression function is considered to 
be acceptable (Schmola and Scholkopf 
1998). 

Using Lagrangian multipliers, the 
solution to the optimization problem of 
equation (2) can be written as follows:  

minimize
 

 (3)
subject to: 

where αi,  – the Lagrange multipliers. 

To handle non-linear regression cases 
the data is linearized by mapping it into 
a higher dimensional space using La-
grange transformations incorporating 
kernel functions, so that linear regression 
functions can be applied. The commonly 
used kernels are the radial basis func-
tion (RBF) kernels, sigmoid kernels, and 
polynomial kernels (Gunn 1998; Chang 
and Lin 2001). The RBF kernel, most 
commonly used in SVM approaches, is 
defi ned as follows: 

 (4)

where γ – kernel parameter. 
Using the kernel function, the above-

-mentioned optimization function equa-
tion can be rewritten as:
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the SVM regression model is built based 
on these optimum values. The generali-
zation ability and predictive accuracy of 
the model is determined by using the test 
data set. 

Method description

In this study SVM models were trained 
using a set of data containing both inde-
pendent and dependent variables. The 
data set contained seventeen independ-
ent variables (inputs), namely: day of the 
year, rainfall, antecedent precipitation in-
dex (API5), watershed area, length of the 
watershed, relief, circulatory ratio (the 
ratio of the watershed area to the area of 
a circle of the same perimeter as that of 
the watershed), compactness coeffi cient 
(a ratio between the watershed perimeter 
and the circumference of a circle with 
the same area), elongation ratio (the ratio 
of the diameter of a circle with the same 
area as the watershed area to the maxi-
mum length of the watershed), drainage 
density (which is a ratio between the to-
tal length of the drainage channel to the 
drainage area of a watershed), time of 
concentration, length of streams, main 
channel length, percentage of agricultur-
al area, percentage of forested area, per-
centage of scrubs area, and runoff calcu-
lated with the curve number method. The 
dependent variables (outputs) were run-
off, base fl ow and total fl ow. Each out-
put was modeled separately as the SVM 
structure allows modeling of one output 
at a time. 

The data collected over the three wa-
tersheds were collated and randomized, 
generating data sets that did not repre-
sent a single watershed but rather the 
characteristics of all three. This allowed 

minimize 

(5)
subject to

The solution of this problem will yield 
αi and  for all i = 1,2, ..., M. It should 
be mentioned that all the training points 
within the ε-sensitive zone will yield αi 
and  equal to zero. The type of ker-
nel function to be used is selected by the 
user. The user also needs to adjust the 
kernel-specifi c parameters, the values of 
parameters γ, C, and ε. The selection of 
the optimal values of these parameters 
determines the success of the SVM ap-
proach for a given problem. For more 
detailed information, readers are referred 
to Vapnik (1995), Burges (1998), and 
Cristianini and Shawe-Taylor (2000). 

The SVM regression model is trained 
using a portion of the data set (e.g., 80%) 
containing the dependent and independ-
ent variables. The remaining 20% of the 
data (unseen data) is used for testing the 
predictive accuracy or performance of 
the developed model. The model is run 
with different sets of values of γ, ε, and 
C, using the training data set, and the op-
timal values are selected by optimizing 
the cross-validation error using a fi ve-
-fold cross-validation technique. Next, 
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development of a generalizing model, 
that if proven accurate would allow its 
use in predicting fl ow for ungauged 
watersheds of similar geographical and 
climatic characteristics where past rain-
fall/runoff are not available. This gener-
alizing ability was based upon the work 
of Sharda et. al (2006) in determining the 
most important watershed features in the 
watersheds that affect the rainfall-runoff 
relationships (curve number, rainfall, an-
tecedent moisture condition and day of 
the year).

The available data for modeling were 
limited to just three watersheds over 
a period of three years, which is not suf-
fi cient for modeling hydrologic behav-
iours. However, the available data were 
suffi cient for evaluating the potential of 
the SVM method in modeling rainfall-
-runoff in hilly watersheds. For compre-
hensive model development, data from 
a greater number of watersheds over 
a longer period would need to be collect-
ed. Because of the small available data 
set a fi ve-fold cross-validation procedure 
was applied to check the generalization 
ability of the model. In this procedure, 
the data was randomized and divided into 
fi ve equal parts. The models were trained 
using four parts of the data (80%), and 
tested with the remaining “unseen” fi fth 
part (20%) to evaluate model perform-
ance. The procedure was repeated for all 
fi ve possible combinations. 

The performance of each model was 
evaluated by regression analysis of the 
simulated results over observed data. 
The intercepts and the slopes of the best-
fi t regression lines were determined and 
compared with their ideal values of 0 
and 1, respectively. Other statistical pa-
rameters such as, root mean square er-

ror (RMSE), mean bias error (MBE) and 
modeling effi ciency (EF), were also used 
for the comparison of the estimated and 
measured data. RMSE represents the 
mean distance between measured and 
estimated data (Kobayashi and Salam 
2000), and is generally very sensitive to 
extreme values. Mean bias error (MBE) 
displays various features of the overall 
deviation between estimated and meas-
ured data, and can show the general bias 
of the model predictions. The optimum 
value of MBE is zero and it can be ei-
ther positive or negative. Modeling effi -
ciency can be viewed as an indicator of 
the overall correspondence between the 
measured and estimated values, and ex-
plains the goodness of fi t of the predicted 
values with observed values. In the case 
of biased data, if the data is strongly cor-
related, EF gives more acceptable analy-
sis than R2. A negative value of EF shows 
the model prediction to be very poor.

To further explore the ability of SVM 
models in predicting runoff, base fl ow 
and total fl ow models were developed 
using separate data categorized for years. 
Year-based models used two-year data 
sets for model development and the third 
“unseen” year data was used for model 
testing. This resulted in a total of three 
pairs of training and testing data sets. 

RESULTS AND DISCUSSION

Prediction of runoff, base fl ow
and total fl ow using the total data set

Runoff prediction
The statistical results from the fi ve-fold 
cross-validation for surface runoff are 
presented in Table 2a. For both training 
and testing data sets, correlation coef-
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fi cients between the observed and pre-
dicted runoff were consistently high in 
the fi ve-fold test (training: 0.91 to 0.94, 
testing: 0.79 to 0.96), highlighting the 
ability of the SVM method to learn the 
input-output relationship and predicting 
runoff. The value of the intercepts were 
close to the ideal value of 0, however, the 
slopes were slightly lower than the ideal 

value of 1, which showed that the model 
under-estimated values for the high run-
off events. This may be explained by the 
small number of high runoff events in the 
training data. There were only 123 run-
off events out of 3,288 data, with only 
fi ve events having runoff higher than 
20 mm, although this may be attributed 
both to the monsoonal nature of the wa-

TABLE 2. Summary of the results obtained from the SVM method applied on watershed data 
with the fi ve-fold cross-validation procedure, for training and testing (randomized data) 

Runoff

Fold
Training Testing

r Slope
Inter-
cept RMSE MBE EF r Slope

Inter-
cept RMSE MBE EF

1 0.907 0.688 0.066 0.644 0.0294 0.800 0.956 0.865 0.019 0.682 –0.011 0.912

2 0.937 0.789 0.034 0.644 0.003 0.870 0.789 0.737 0.060 0.579 0.033 0.601

3 0.935 0.780 0.036 0.650 0.003 0.864 0.863 0.695 0.036 0.551 0.006 0.741

4 0.940 0.837 0.022 0.492 0.002 0.881 0.876 0.574 0.031 1.235 –0.055 0.719

5 0.930 0.770 0.027 0.679 –0.008 0.855 0.960 1.135 0.037 0.332 0.048 0.869

Base fl ow

Fold
Training Testing

r Slope
Inter-
cept RMSE MBE EF r Slope

Inter-
cept RMSE MBE EF

1 0.827 0.662 0.442 0.435 –0.020 0.683 0.770 0.635 0.468 0.495 –0.043 0.586

2 0.823 0.654 0.458 0.444 –0.020 0.676 0.743 0.589 0.539 0.498 –0.017 0.599

3 0.822 0.649 0.469 0.443 –0.016 0.674 0.790 0.630 0.522 0.463 0.024 0.623

4 0.812 0.626 0.482 0.445 –0.029 0.656 0.814 0.617 0.495 0.481 –0.047 0.656

5 0.820 0.652 0.462 0.442 –0.018 0.672 0.783 0.554 0.567 0.485 –0.037 0.605
Total fl ow

Fold
Training Testing

r Slope
Inter-
cept RMSE MBE EF r Slope

Inter-
cept RMSE MBE EF

1 0.925 0.756 0.414 0.692 0.052 0.843 0.937 0.855 0.231 0.888 –0.005 0.878

2 0.928 0.792 0.254 0.784 –0.064 0.854 0.835 0.779 0.321 0.740 –0.002 0.688

3 0.964 0.923 0.109 0.544 –0.009 0.930 0.822 0.907 0.179 0.856 0.045 0.595

4 0.930 0.839 0.199 0.632 –0.041 0.863 0.923 0.607 0.499 1.239 –0.135 0.779

5 0.915 0.776 0.301 0.842 –0.042 0.833 0.879 1.191 –0.234 0.867 –0.039 0.546

r – correlation coeffi cient, RMSE – root mean square error [mm], MBE – mean bias error [mm], 
EF – modelling effi ciency.



78     J. Adamowski

tershed and diffi culty in collecting data. 
The RMSE values for the training and 
testing sets were 0.49 to 0.68 mm and 
0.33 to 1.24 mm, respectively. The cor-
responding MBE values were –0.01 to 
0.03 mm and –0.06 to 0.05 mm. These 
reasonably low values indicate a close 
agreement between the observed and 
simulated runoff for both training and 
testing data sets (Table 2a). The EF val-
ues were high (0.80 to 0.88 for training 
and 0.62 to 0.92 for testing data), which 
confi rm good model performance in run-
off prediction.  

Base fl ow prediction
The statistical results from the fi ve-fold 
cross-validation for base fl ows are pre-
sented in Table 2b. The correlation co-
effi cients for both training and testing 
data sets were consistently high (train-
ing: 0.81 to 0.83, testing: 0.74 to 0.81), 
which implies that the prediction of base 
fl ow is quite satisfactory. The low values 
of RMSE (0.44 to 0.45 mm and 0.46 to 
0.50 mm for the training and testing 
sets, respectively) and MBE (–0.03 to 

–0.02 mm and –0.05 to 0.02 mm) indi-
cate that the observed and simulated val-
ues of base fl ow were very well matched. 
The slope and the intercept values (0.63 
to 0.66 for slope and 0.44 to 0.48 for in-
tercept) of the best-fi t lines indicate that 
the model slightly underestimated the 
base fl ow for higher base fl ow events 
and overestimated for lower base fl ow 
events. The moderate values of EF (0.66 
to 0.68 and 0.59 to 0.66 for training and 
testing sets, respectively) confi rm that 
the SVM model performance was ac-
ceptable in estimating base fl ow.

Total fl ow prediction
The statistical results from the fi ve-
-fold cross-validation for total fl ows are 
presented in Table 2c and illustrated in 
Figures 1 and 2. The high value of the 
correlation coeffi cients for both training 
(0.92 to 0.96) and testing data sets (0.82 
to 0.94) indicated that the SVM models 
consistently predicted total fl ows very 
well. The low values of RMSE (train-
ing: 0.54 to 0.84 mm, testing: 0.74 to 
1.24 mm) and MBE (training: –0.06 to 

FIGURE 1. Total fl ow: simulated versus observed values [mm]
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0.05, testing: –0.14 to 0.04 mm) along 
with the high values of EF (training: 
0.83 to 0.93 mm, testing: 0.55 to 0.88) 
also indicate that the SVM model per-
formance was acceptable in predicting 
total fl ows. Figure 1 plots the measured 
values against the predicted values, with 
the slope of the line of best fi t illustrat-
ing the R value. Figure 2 illustrates the 
measured and predicted values for each 
fl ow event.

Prediction of runoff, base fl ow 
and total fl ow using year-based data

Runoff prediction
The statistical results from the model 
training and validation for runoff predic-
tion using year-based data are reported in 
Table 3a. The correlation coeffi cients be-
tween the observed and predicted runoff 
for training data were high (above 0.93), 
with the slope and intercept values close 
to their ideal values for the best fi t line. 
The RMSE, MBE and EF values were 
closer to their ideal values. Thus, the 
SVM models were able to develop a very 
good relationship in training between 
rainfall-runoff based on the rainfall and 

watershed morphological characteristics 
(Table 3a). 

For the test data, the SVM models 
resulted in high correlation coeffi cients 
(above 0.72), but the slopes of the line 
of best fi t were not very good for all the 
three possible combinations. The RMSE, 
MBE and EF values indicated a mis-
match between the observed and predict-
ed values of runoff. Such results may be 
explained by the limited data available 
in testing, accentuated when the model 
extrapolates for predictions. 

Taking into account the complexity of 
the procedure of relating rainfall data to 
runoff, and the limited (three years) data, 
the results were in the expected range. It 
is evident that SVM models perform sat-
isfactorily in predicting runoff when the 
training data set contains extreme runoff 
values (as was the case with year 1 and 3 
for training and year 2 for testing). 

Base fl ow prediction
The statistical results from the model 
training and validation for base fl ow 
prediction using year-based data are re-
ported in Table 3b. For all three com-
binations consistently high correlation 
coeffi cients (above 0.80) were obtained 

FIGURE 2. Observed and simulated total fl ow values plotted for each event [mm]
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between the observed and predicted base 
fl ow for training data. This shows that 
the SVM models were able to establish 
a reasonable link between rainfall-runoff 
events. However, for testing the correla-
tion coeffi cient values were lower (0.61 
to 0.79). Similarly, the slope and inter-
cept values of the best-fi t line, RMSE, 
MBE and EF for the training data sets 
were consistently closer to their ideal 
values, whereas this was not the case 
with the testing data sets.  

Total fl ow prediction
The statistical results from the model 
training and validation for total fl ow pre-
diction using year-based data are report-
ed in Table 3c. The training data sets re-
ported high correlation coeffi cients (0.94 
to 0.97), along with slope and intercepts 
close to their ideal values. The good 
RMSE (less than 0.76 mm), MBE (less 
than 0.11 mm) and EF values (higher 
than 0.87) also confi rmed that the SVM 
models were able to establish rainfall-
total fl ow relationships in conjunction 
with the watershed rainfall and morpho-
logical characteristics during training. 
The results for the testing data sets were 
relatively poor compared to the training 
data sets; however, the results were satis-
factory when the testing data were with-
in the range of the data used for model 
training. 

CONCLUSIONS

In this study it was found that SVM mod-
els have the capability to develop rela-
tionships between rainfall and watershed 
characteristics and runoff, base fl ow and 
total fl ow in hilly watersheds.

The results from the fi ve-fold cross-
validations for the training data sets were 
encouraging, and the results indicate that 
the models can learn the hidden relation-
ships between the inputs and all the three 
outputs: runoff, base fl ow and total fl ow. 
The fi ve-fold cross-validations also pro-
duced encouraging results when testing 
the data against “unseen” data.

For the development of SVM models 
on a yearly basis the training correlations 
produced were encouraging. However, 
when tested against “unseen” data, the 
SVM models did not produce very accu-
rate results. This result may be explained 
by the smaller data set available for train-
ing of these models, and given the en-
couraging results from training and the 
fi ve-fold validation tests there is reason 
to expect that more accurate SVM mod-
els for yearly basis may be developed 
given suffi cient training data. 

It is concluded that SVM models have 
the potential to be developed for and used 
in the accurate prediction of runoff, base 
fl ow and total fl ow in hilly areas. How-
ever, it is recommended that further work 
be undertaken.  The utilization of larger 
data sets to further investigate yearly 
models in different watersheds needs to 
be explored.  As well, uncertainty related 
to the forecasting needs to be explored, 
as does comparing SVM models with 
other state of the art forecasting methods 
such as wavelet neural network models.
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Streszczenie: Wykorzystanie wektorów wspiera-
jących w zależnościach regresyjnych do progno-
zowania odpływu bezpośredniego i całkowitego 
w zlewniach górskich przy ograniczonej licz-
bie danych w zlewni Uttaranchal, Indie. Na ob-

szarach wrażliwych, jakim są Himalaje, zmiany 
w wykorzystaniu powierzchni obszarów górskich 
oraz zasobów przyrodniczych modyfi kują warun-
ki kształtowania się odpływu. Dla zrównoważo-
nego gospodarowania zasobami wodnymi w tym 
regionie koniecznym jest prognozowanie odpły-
wu ze zlewni na podstawie opadu i warunków 
morfologicznych obszaru. Prognozowanie odpły-
wu przy wykorzystaniu modeli deterministycz-
nych jest dosyć trudne i ograniczone ze względu 
na trudności w identyfi kacji wielu parametrów. 
W pracy zastosowano modele wykorzystujące 
techniki sztucznej inteligencji (AI) za pomocą 
wektorów wspierających (SVM) jako alternaty-
wę do modelowania zależności opad-odpływ dla 
trzech zlewni górskich w stanie Uttaranchal, In-
die.  Wyniki zawarte w pracy potwierdzają moż-
liwość wykorzystanie metody SVM do progno-
zowania charakterystycznych wielkości odpływu 
w warunkach górskich.

Słowa kluczowe: metoda wektorów wspierających, 
sztuczna inteligencja, modelowanie, odpływ, Hi-
malaje, zlewnia górska

MS. received 28 June 2013

Author’s address:
Department of Bioresource Engineering
Faculty of Agricultural and Environmental 
Sciences
McGill University
21111 Lakeshore Road, Ste-Anne de Bellevue, 
Que., Canada H9X 3V9
e-mail: jan.adamowski@mcgill.ca




