Department of Mechanical Engineering and Automatics, University of Life Sciences in Lublin, Doswiadczalna 50A, 20-280 Lublin, Poland
Bibliografia
1. Caram Y., Bautista F., Puig J.E., Manero O., 2006: On the rheological modeling of associative polymers. Rheologica Acta, 46, 45-57.
2. Golacki K., Kołodziej P., 2011: Impact testing of biological material on the example of apple tissue. TEKA Commission of Motorization and Power Industry in Agriculture, 11c, 74-82.
3. Gołacki K., Kołodziej P., Stankiewicz A., Stropek Z., 2003: Report of KBN Grant No 5P06F00619: “Mechanical hardiness of sugar beet analysis in the context of practical mechanical loads”, 1-214 [in Polish].
4. Hasiewicz Z., Stankiewicz A., 1985: On Input-Indepen-dent System Identification by Monte-Carlo Approach. IEEE Transaction on Automatic Control, 30(5), 480-483.
5. Hemmat A., Nankali N., Aghilinategh N., 2012: Simulating stress-sinkage under a plate sinkage test using a viscoelastic 2D axisymmetric finite element soil model. Soil and Tillage Research, 118, 107-116.
6. Hernandez-Jimenez A., Hernandez-Santiago J., Macias-Garcia A., Sanchez-Gonzalez J., 2002: Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, 21, 325-331.
7. Holmstrom K., Petersson J., 2002: A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Applied Mathematics and Computation, 126, 31-61.
8. Kawada Y., Nagahama H., Hara H., 200: Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks. Tectonophysics, 427, 255-263.
9. Khazaei J., Mann D.D., 2005: Effects of moisture content and number of loadings on force relaxation behaviour of chickpea kernels. International Agrophysics, 19, 305-313.
10. Kundu D., Mitra A., 1998: Estimating the parameters of the linear compartment model. J. Journal of Statistical Planning and Inference. 70, 317-334.
11. Lebedev N.N., 1972: Special functions and their applications. Dover, New York.
12. Maxwell J.C., 1866: On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London Series A, A157, 26-78.
13. Mun S.Zi G., 2010: Modeling the viscoelastic function of asphalt concrete using a spectrum method. Mechanics of Time-Dependent Materials, 14, 191-202.
14.Nadulski R., Rusińska E., Kobus Z., Guz T., 2012: Effect of selected factors on grain mass creep test under simulated load conditions. TEKA Commission of Motorization and Power Industry in Agriculture, 12(1), 159-162.
15. Nęcka K., 2011: Use of data mining techniques for predicting electric energy demand. TEKA Commission of Motorization and Power Industry in Agriculture, 11c, 237-245.
16. Singh A.P., Lakes R.S., Gunasekaran S., 2006: Viscoelastic characterization of selected foods over an extended frequency range. Rheologica Acta, 46, 131-142.
17. Somashekar A.A., Bickerton S., Bhattacharyya D., 2012: Modelling the viscoelastic stress relaxation of glass fibre reinforcements under constant compaction strain during composites manufacturing. Composites: Part A, 43, 1044-1052.
18. Stankiewicz A., 2007: Identification of the relaxation spectrum of viscoelastic plant materials. Ph. D. Thesis, Agricultural University of Lublin, Poland [in Polish].
19. Stankiewicz A., 2012: On measurement the point-independent identification of Maxwell model of viscoelastic materials. TEKA Commission of Motorization and Power Industry in Agriculture (submitted for publication).
20. Zhang J., Richards C.M., 2007: Parameter identification of analytical and experimental rubber isolators represented by Maxwell models. Mechanical Systems and Signal Processing, 21, 2814-2832.