PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Source identification of heavy metals in particulate matter (PM10) in a Malaysian traffic area using multivariate techniques

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was conducted to determine heavy metal concentrations in particulate matter (PM₁₀) and the source identification in the areas affected by traffic during the southwest monsoon from June to July 2014. Collection of the particulate samples was done at three sampling sites that have varying traffic densities (high, medium, and low). Samples were collected using a high-volume air sampler. Heavy metals in the particulate matter (PM₁₀) were assessed with inductively coupled plasma mass spectrometry. The results show that the mean concentrations of PM₁₀ for high-, medium-, and low-density traffic were found to be 207.63±7.82, 164.92±10.68, and 90.09±20.70 µg m⁻³, respectively. The concentrations in high- and mediumdensity areas were found to be significantly higher than 150 µg m⁻³ for 24 hrs as per Recommended Malaysian Air Quality Guidelines (RMAQG). The heavy metals found were dominated by Ba and Fe, followed by Cu > V> Zn > Pb > Mn > Cr> As > Ni >Cd > Co. A comparison of the concentrations of heavy metals with the United State Environmental Protection Agency (USEPA) and World Health Organization (WHO) guidelines revealed that As was higher than the standards in high- and medium-density areas. Cluster analysis (CA) and principal component analysis (PCA) were employed in the identification of the sources of metals for high-, medium-, and low-traffic densities. The CA identified three clusters for high-, medium-, and low-traffic densities, while PCA extracted four sources for high-, medium-, and low-traffic densities and the major pollution sources identified were vehicle exhaust emission, non-exhaust emission (brake and tire wear), and re-suspension dust.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p. 2523-2532,fig.,ref.

Twórcy

autor
  • 1 Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 1 Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 1 Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Environmental pollution Control Technology, Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Bibliografia

  • 1. Das R., Khezri B., Srivastava B., Datta S., Sikdar P.K., Webster R.D., Trace element composition of PM₂.₅ and PM₁₀ from Kolkata-a heavily polluted Indian metropolis. Atmos Pollut Res. 6 (5),742, 2015.
  • 2. Xie Y., Zhao B., Zhang L., Luo R. Spatiotemporal variations of PM₂.₅ and PM₁₀ concentrations between 31 Chinese cities and their relationships with SO₂, NO₂, CO and O₃. Particuology. 20, 141, 2015.
  • 3. Zúñiga J., Tarajia M., Herrera V., Urriola W., Gómez B., Motta J. Assessment of the Possible Association of Air Pollutants PM₁₀, O₃, NO₂ With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis. Medicine. 95 (2), e2464, 2016.
  • 4. Capasso L., Longhin E., Caloni F., Camatini M., Gualtieri M. Synergistic inflammatory effect of PM₁₀ with mycotoxin deoxynivalenol on human lung epithelial cells. Toxicon. 104, 65, 2015.
  • 5. Duong T.T., Lee B.-K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manage. 92 (3), 554, 2011.
  • 6. Ondráček J., Schwarz J., Ždímal V., Andělová L., Vodička P., Bízek V. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmos. Environ. 45 (29), 5090, 2011.
  • 7. Amato F., Pandolfi M., Moreno T., Furger M., Pey J., Alastuey A. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 45 (37),6777, 2011.
  • 8. Harrison R.M., Jones A.M., Gietl J., Yin J., Green D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46 (12), 6523, 2012.
  • 9. Juneng L., Latif M.T., Tangang F. Factors influencing the variations of PM₁₀ aerosol dust in Klang Valley, Malaysia during the summer. Atmos. Environ. 45 (26), 4370, 2011.
  • 10. Lawrence S., Sokhi R., Ravindra K., Mao H., Prain H.D., Bull I.D. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 77, 548, 2013.
  • 11. Azmi S.Z., Latif M.T., Ismail A.S., Juneng L., Jemain A.A. Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Qual Atmos Health. 3 (1), 53, 2010.
  • 12. Wahid N., Latif M., Suan L., Dominick D., Sahani M., Jaafar S. Source Identification of Particulate Matter in a Semi-urban Area of Malaysia Using Multivariate Techniques. Bull. Environ. Contam. Toxicol. 92 (3), 317, 2014.
  • 13. Yusup Y., Alkarkhi A.F. Cluster analysis of inorganic elements in particulate matter in the air environment of an equatorial urban coastal location. Chem. Ecol. 27 (3), 273, 2011.
  • 14. Ismail I., Laiman R., Ahmad H. Study of particulate matter (PM₁₀) concentration and elemental composition at damansara-puchong highway. In 2011 International Conference on Biology, Environment and Chemistry. Singapore. 2011.
  • 15. Tahir N.M., Suratman S., Fong F.T., Hamzah M.S., Latif M.T. Temporal distribution and chemical characterization of atmospheric particulate matter in the eastern coast of Peninsular Malaysia. Aerosol Air Qual Res. 13 (2), 584, 2013.
  • 16. Apeagyei E., Bank M.S., Spengler J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 45 (13), 2310, 2011.
  • 17. DOE, Malaysia. Environmental Quality Report. Putrajaya, Malaysia. 2014.
  • 18. RTVM, Road Traffic Volume Malaysia, Ministry of Work Malaysia. 2014.
  • 19. IO-2.1, M., Sampling of ambient air for total suspended particulate matter (SPM) and PM₁₀ using high volume sampler. EPA/625/R-96/010a.Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. US-Environmental Protection Agency, Cincinnati, OH. 1999.
  • 20. IO-3.1, M., Selection, preparation and extraction of filter material. EPA/625/R-96/010a Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. US-Environmental Protection Agency, Cincinnati, OH. 1999.
  • 21. Latif M.T., Azmi S.Z., Noor A.D.M., Ismail A.S., Johny Z., Idrus S. The impact of urban growth on regional air quality surrounding the Langat River Basin, Malaysia. The Environmentalist. 31 (3), 315, 2011.
  • 22. Shah M.H., Shaheen N. Seasonal behaviours in elemental composition of atmospheric aerosols collected in Islamabad, Pakistan. Atmos. Res. 95 (2) 210, 2010.
  • 23. Shah M.H., Shaheen N., Nazir R. Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmos Pollut Res. 3 (1), 39, 2012.
  • 24. Callén M., De La Cruz M., López J., Navarro M., Mastral A. Comparison of receptor models for source apportionment of the PM₁₀ in Zaragoza (Spain). Chemosphere. 76 (8), 1120, 2009.
  • 25. Sahu B.K., Begum M., Khadanga M., Jha D.K., Vinithkumar N., Kirubagaran R. Evaluation of significant sources influencing the variation of physico-chemical parameters in Port Blair Bay, South Andaman, India by using multivariate statistics. Marine pollution bulletin. 66 (1), 246, 2013.
  • 26. Ranjan R.K., Ramanathan A., Parthasarathy P., Kumar A. Hydrochemical characteristics of groundwater in the plains of Phalgu River in Gaya, Bihar, India. ARAB J Geosci. 6 (9), 3257, 2013.
  • 27. Wahid N.B.A., Latif M.T., Suratman S. Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere. 91 (11), 1508, 2013.
  • 28. Azid A., Juahir H., Toriman M.E., Endut A., Kamarudin M.K.A., Rahman M.N.A. Source Apportionment of Air Pollution: A Case Study In Malaysia. Jurnal Teknologi. 72 (1), 2014.
  • 29. Mansha M., Ghauri B., Rahman S., Amman A. Characterization and source apportionment of ambient air particulate matter (PM₂.₅) in Karachi. Sci. Total Environ. 425, 176, 2012.
  • 30. Toh Y.Y., Lim S.F., von Glasow R. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmos. Environ. 70, 435, 2013.
  • 31. Dubey B., Pal A.K., Singh G. Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad Region, Jharkhand, India. Atmos Pollut Res. 3 (2), 238, 2012.
  • 32. Wang J., Hu Z., Chen Y., Chen Z., Xu S. Contamination characteristics and possible sources of PM₁₀ and PM₂.₅ in different functional areas of Shanghai, China. Atmos. Environ. 68, 221, 2013.
  • 33. Song F., Gao Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area. Atmos. Environ. 45 (37), 6714, 2011.
  • 34. Mooibroek D., Schaap M., Weijers E., Hoogerbrugge R. Source apportionment and spatial variability of PM₂.₅ using measurements at five sites in the Netherlands. Atmos. Environ. 45 (25), 4180, 2011.
  • 35. Khan M., Latif M., Saw W., Amil N., Nadzir M., Sahani M. Fine particulate matter associated with monsoonal effect and the responses of biomass fire hotspots in the tropical environment. Atmos. Chem. Phys. Discuss.15, 22215, 2015.
  • 36. Pant P., Harrison R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos. Environ. 77, 78, 2013.
  • 37. Huang X.H., Bian Q., Ng W.M., Louie P.K., Yu J.Z. Characterization of PM₂.₅ major components and source investigation in suburban Hong Kong: A one year monitoring study. Aerosol Air Qual Res. 14 (1), 237, 2014.
  • 38. Wang Y., Hopke P.K. A ten-year source apportionment study of ambient fine particulate matter in San Jose, California. Atmos Pollut Res.. 4 (4),398, 2013.
  • 39. Dall’Osto M., Querol X., Amato F., Karanasiou A., Lucarelli F., Nava S. Hourly elemental concentrations in PM₂.₅ aerosols sampled simultaneously at urban background and road site during SAPUSS-diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. 13 (8), 4375, 2013.
  • 40. Yu L., Wang G., Zhang R., Zhang L., Song Y., Wu B. Characterization and source apportionment of PM₂.₅ in an urban environment in Beijing. Aerosol Air Qual Res. 13 (2), 574, 2013.
  • 41. Gugamsetty B., Wei H., Liu C.-N., Awasthi A., Hsu S.-C., Tsai C.-J. Source characterization and apportionment of PM₁₀, PM₂.₅ and PM₀.₁ by using positive matrix factorization. Aerosol Air Qual. Res. 12, 476, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-189a8b86-f1fd-4942-a2be-c2b4ef26d383
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.