PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Response to NaCl stress in salix matsudana koidz seedlings

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of different NaCl concentrations (0.1, 0.2, and 0.4%) on plant growth, the enzymatic antioxidant system, lipid peroxidation, and cell damage were investigated in Salix matsudana Koidz to better understand the tolerant mechanism under NaCl stress. The results indicate that cell damage was induced in roots by NaCl stress as early as after just 1 h of exposure, which increased with increasing NaCl concentration and prolonged treatment. The activities of SOD, POD, and CAT in S. matsudana under NaCl stress were enhanced except for the SOD activity in leaves under 0.4% NaCl at day 28, and CAT activities in leaves exposed to 0.4% NaCl on days 21 and 28. NaCl exposure caused increasing O₂⁻ and H₂O₂ contents. The MDA content in roots exposed to 0.2 and 0.4% NaCl increased except for that in 0.2% NaCl on day 14 compared with control. The MDA level in leaves of control was lower than that of all NaCl treatments. The soluble protein contents in roots increased significantly (P<0.05), except for that 0.1% NaCl during days 21 to 28. It increased significantly in leaves exposed to 0.4% NaCl, but decreased sharply at day 28.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

P.753-762,fig.

Twórcy

autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China

Bibliografia

  • 1. QIAO G.R., ZHANG X.G., JIANG J., LIU M.Y., HAN X.J., YANG H.Q., ZHUO R.Y. Comparative proteomic analysis of responses to salt stress in Chinese Willow (Salix matsudana Koidz). Plant Mol. Biol. Rep. 32, 814, 2014.
  • 2. WANG W.X., VINOCUR B., ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1, 2003.
  • 3. CARVALHO M.F., CORREA M.M., CARVALHO G.C., ROLIM NETO F.C., MARINHO G.P.A., ANDRADE S.B.D. Enzymatic activity of three sugarcane varieties under salt stress. Rev. Bras. Eng. Agr. Amb. 20, 806, 2016.
  • 4. VUJAKOVIC M., BALEŠEVIĆ-TUBIĆ S., JOVIČIĆ D., TAŠKI-AJDUKOVIĆ K., PETROVIĆ D., NIKOLIĆ Z., ĐORĐEVIĆ V. Viability of soybean seed produced under different agro-meteorological conditions in Vojvodina. Genetika 43, 625, 2011.
  • 5. ACOSTA-MOTOS J.R., ORTUÑO M.F., BERNAL-VICENTE A., DIAZ-VIVANCOS P., SANCHEZ-BLANCO M.J., HERNANDEZ J.A. Plant responses to salt stress: adaptive mechanisms. Agron. 7, 18, 2017.
  • 6. KATSUHAR M., KAWASAKI T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol. 37, 169, 1996.
  • 7. HERNANDEZ M., FERNANDEZ-GARCIA N., DIAZ-VIVANCOS P., OLMOS E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J. Exp. Bot. 61, 521, 2010.
  • 8. CHOUDHURY S., PANDA P., SAHOO L., PANDA S.K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 8, e23681, 2013.
  • 9. MAHAJAN S., TUTEJA N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444, 139, 2005.
  • 10. YOU J., CHAN Z.L. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 6, 1092, 2015.
  • 11. MILLER G., SUZUKI N., CIFTCI-YILMAZ S., MITTLER R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ. 33, 453, 2010.
  • 12. PANG C.H., WANG B.S. Oxidative Stress and Salt Tolerance in Plants. Prog. Bot. 69, 231, 2008.
  • 13. LAUER N., ROSS C. Physiological and oxidative stress responses of baldcypress in response to elevated salinity: linking and identifying biomarkers of stress in a keystone species. Acta. Physiol. Plant 38, 275, 2016.
  • 14. MITTLER R., VANDERAUWERA S., GOLLERY M., BREUSEGEM F.V. Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490, 2004.
  • 15. ABOGADALLAH G.M. Antioxidative defense under salt stress. Plant Signal. Behav. 5, 369, 2010.
  • 16. ASHRAF M., AKRAM N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv. 27, 26, 2009.
  • 17. MITTOVA V., VOLOKITA M., GUY M. Antioxidative systems and stress tolerance: Insight from wild and cultivated tomato species. Springer International Publishing, Switzerland, 23, 89, 2015.
  • 18. BECANA M., MATAMOROS M., UDVARDI M., DALTON D.A. Recent insights into antioxidant defenses of legume root nodules. New Phytol. 188, 960, 2010.
  • 19. ASHRAF M., HARRIS P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3, 2004.
  • 20. WANG Y., YUAN H.W., LI M., LI Y.J., MA X.J., TAN F., ZHANG J. Phenotypic and physiological responses of two willow varieties to salt stress. Isr. J. Plant Sci. 61, 73, 2013.
  • 21. KOYAMA H., TODA T., YOKOTA S., DAWAIR Z., HARA T. Effects of aluminum and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol. 36, 201, 1995.
  • 22. JONES K.H., SENFT J.A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 33, 77, 1985.
  • 23. WEI P., YANG Y., FANG M., WANG F., CHEN H.J. Physiological response of young seedlings from five accessions of Diospyros L. under salinity stress. Korean J. Hortic. Sci. Technol. 34, 567, 2016.
  • 24. BRADFORD M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 25. VELIKOVA V., YORDANOV I., EDREVA A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59, 2000.
  • 26. WANG A.G., LUO G.H. Quantitative relation relation between the reaction of hydroxylaminc and superoxidc anion radicals in plants. Plant Physiol. Commun. 26, 55, 1990.
  • 27. KRASENSKY J., JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593, 2012.
  • 28. HERNÁNDEZ J.A., JIMÉNEZ A., MULLINEAUX P., SEVILLA F. Tolerance of pea (Pisum sativum L.) to long-term stress is associated with induction of antioxidant defences. Plant, Cell Environ. 23, 853, 2000.
  • 29. CHEN P., WANG H.Y., TANG X.L., BRESTIC M., SHAO H.B. Comparative physiological study between cultivated and wild soybean species under salt stress. Jökull J. 63, 114, 2013.
  • 30. ABBASI G.H., AKHTAR J., AHMAD R., JAMIL M., ANWAR-UL-HAQ M., ALI S., IJAZ M. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul. 76, 111, 2015.
  • 31. LIAO T.T., JIA R.W., SHI Y.L., JIA J.W., WANG L., CHUA H. Propidium iodide staining method for testing the cytotoxicity of 2,4,6-trichlorophenol and perfluorooctane sulfonate at low concentrations with Vero cells. J. Environ. Sci. Heal. A. 46, 1769, 2011.
  • 32. LIAO T.T., SHI Y.L., JIA J.W., WANG L. Sensitivity of different cytotoxic responses of Vero cells exposed to organic chemical pollutants and their reliability in the biotoxicity test of trace chemical pollutants. Biomed. Environ. Sci. 23, 219, 2010.
  • 33. KATSUHARA M. Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol. 38, 545, 1997.
  • 34. GARG N., SINGLA P. Naringenin-and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J. Plant Growth Regul. 34, 595, 2015.
  • 35. ELLOUZI H., SGHAYAR S., ABDELLY C. H₂O₂ seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J. Plant Physiol. 210, 38, 2017.
  • 36. GALLEGO S.M., PENA L.B., BARCIA R.A., AZPILICUETA C.E., IANNONE M.F., ROSALES E. P., ZAWOZNIK M.S., GROPPA M.D., BENAVIDES M.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33, 2012.
  • 37. HOU W., SUN A.H., YANG F.S., ZHAN Y.F., LI S.Z., ZHOU Z.D. Effects of sub-optimal temperatures and low light intensity on growth and anti-oxidant enzyme activities in watermelon (Citrullus lanatus) seedlings. J. Hortic. Sci. Biotechnol. 90, 92, 2015.
  • 38. MONTILLET J.L., CHAMNONGPOL S., RUSTÉRUCCI C., DAT J., VAN DE COTTE B., AGNEL J.P., BATTESTI C., INZÉ D., VAN BREUSEGEM F., TRIANTAPHYLIDES C. Fatty acid hydroperoxides and H₂O₂ in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138, 1516, 2005.
  • 39. BHASKARAN J., PANNEERSELVAM R. Accelerated reactive oxygen scavenging system and membrane integrity of two Panicum species varying in salt tolerance. Cell Biochem. Biophys. 67, 885, 2013.
  • 40. YUREKLI F., PORGALI Z.B. The effects of excessive exposure to copper in bean plants. Acta Biol.Cracov. Bot. 48, 7, 2006.
  • 41. KIANI-POUYA A. Changes in activities of antioxidant enzymes and photosynthetic attributes in triticale (×triticosecale wittmack) genotypes in response to longterm salt stress at two distinct growth stages. Acta Physiol. Plant, 37, 1, 2015.
  • 42. FRIDOVICH I. Superoxide anion radical (O₂–), superoxide dismutase and related matters. J. Biol. Chem. 272, 18515, 1997.
  • 43. EKMEKÇI Y., TANYOLAÇ D., AYHAN B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol. 165, 600, 2008.
  • 44. CHENG T.S. NaCl-induced responses in giant duckweed (Spirodela polyrhiza). J. Aquat. Plant Manage. 49, 62, 2011.
  • 45. LEDESMA F., LOPEZ C., ORTIZ D., CHEN P.Y., KORTH K.L., ISHIBASHI T., ZENG A., ORAZALY M., FLOREZPALACIOS L. A simple greenhouse method for screening salt tolerance in soybean. Crop Sci. 27, 182, 2016.
  • 46. KIANI S.P., GRIEU P., MAURY P., HEWEZI T., GENTZBITTEL L., SARRAFI A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor. App. Genet. 114, 193, 2007.
  • 47. CHAVES M.M., FLEXAS J., PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551, 2009.
  • 48. BUCHANAN B.B., GRUISSEM W., JONES R.L. Biochemistry and Molecular Biology of Plants. American Society of plant physiologists, Rockville. 2000.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1880c20b-2e9a-4bb2-8a6b-442fc3c0002b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.