PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 4 |

Tytuł artykułu

Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Despite strong efforts in the field, spinal cord trauma still belongs among the untreatable neurological conditions at present. Given the complexity of the nervous system, an effective therapy leading to complete recovery has still not been found. One of the potential tools for supporting tissue regeneration may be found in mesenchymal stem cells, which possess anti‑inflammatory and trophic factor‑producing properties. In the context of transplantations, application of degradable biomaterials which could form a supportive environment and scaffold to bridge the lesion area represents another attractive strategy. In the present study, through a combination of these two approaches we applied both alginate hydrogel biomaterial alone or allogenic transplants of MSCs isolated from bone marrow seeded in alginate biomaterial into injured rat spinal cord at three weeks after spinal cord compression performed at Th8‑9 level. Following three‑week survival, using immunohistochemistry we studied axonal growth (GAP‑43 expression) and both microglia (Iba‑1) and astrocyte (GFAP) reactions at the lesion site and in the segments below and above the lesion. To detect functional improvement, during whole survival period we performed behavioral analyses of locomotor abilities using a classical open field test (BBB score) and a Catwalk automated gait analyzing device (Noldus). We found that despite the absence of locomotor improvement, application of both alginate and MSCs caused significant increase in the number of GAP‑43 positive axons.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

4

Opis fizyczny

p.337-350,fig.,ref.

Twórcy

autor
  • Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
autor
  • Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
autor
  • Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
autor
  • University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
autor
  • University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
  • Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia

Bibliografia

  • Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld‑Hallin Z, Olson  L and Prockop D (2009) Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury‑induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 27: 307–321.
  • Aggarwal S and Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822.
  • Aloisi F (2001) Immune function of microglia. Glia 36: 165–179. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ and Sofroniew MV (2016) Astrocyte scar for‑ mation aids central nervous system axon regeneration. Nature 532: 195–200.
  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12: 1–21.
  • Blight AR and Zimber MP (2001) Acute spinal cord injury: pharmacotherapy and drug development perspectives. Curr Opin Investig Drugs 2: 801–808.
  • Block, ML and Hong, JS (2005) Microglia and inflammation‑mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76: 77–98.
  • Brock JH, Graham L, Staufenberg E, Collyer E, Koffler J, Tuszynski MH (2015) Bone Marrow Stromal Cell Intraspinal Transplants Fail to Improve Motor Outcomes in a Severe Model of Spinal Cord Injury. J Neurotrauma 33: 1103–1114.
  • Cizkova D, Rosocha J, Vanicky I, Jergova S and Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26: 1167–1180.
  • Curtis R, Green D, Lindsay RM and Wilkin GP (1993) Up‑regulation of GAP‑43 and growth of axons in rat spinal cord after compression injury. J Neurocytol 22: 51–64.
  • Donnelly DJ and Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209: 378–388.
  • Fitch MT and Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209: 294–301.
  • Foret A, Quertainmont R, Botman O, Bouhy D, Amabili P, Brook G, Schoenen J and Franzen R (2009) Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise. J Neurochem 112: 762–772.
  • Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP and Anderson AJ (2008) Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci 28: 13876–13888.
  • Grulova I, Slovinska L, Blasko J, Devaux S, Wisztorski M, Salzet M, Fournier I, Kryukov O, Cohen S and Cizkova D (2015) Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair. Sci Rep 5: 13702.
  • Grulova I, Slovinska L, Nagyova M, Cizek M and Cizkova D (2013) The effect of hypothermia on sensory‑motor function and tissue sparing af‑ ter spinal cord injury. Spine J 13: 1881–1891.
  • Gunther MI, Gunther  M, Schneiders  M, Rupp R and Blesch A (2015a) AngleJ: A new tool for the automated measurement of neurite growth orientation in tissue sections. J Neurosci Methods 251: 143–150.
  • Gunther MI, Weidner N, Muller R and Blesch A (2015b) Cell‑seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 27: 140–150.
  • Hamano K, Li TS, Kobayashi T, Kobayashi S, Matsuzaki  M and Esato K (2000) Angiogenesis induced by the implantation of self‑bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant 9: 439–443.
  • Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB and Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma 18: 187–201.
  • Hendricks, WA, Pak ES, Owensby JP, Menta KJ, Glazova M, Moretto J, Hollis S, Brewer KL and Murashov AK (2006) Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice. Mol Med 12: 34–46.
  • Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G and Feng H (2010) Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 38: 2181–2189.
  • Joosten EA, Veldhuis WB and Hamers FP (2004) Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res 77: 127–142.
  • Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO and Lee PH (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti‑inflammatory action. Glia 57: 13–23.
  • Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Muller D, Zuschratter W and Muller HW (2005) Suppression of fibrous scarring in spinal cord injury of rat promotes long‑distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 22: 3047–3058.
  • Kloos AD, Fisher LC, Detloff MR, Hassenzahl DL and Basso DM (2005) Stepwise motor and all‑or‑none sensory recovery is associated with nonlinear sparing after incremental spinal cord injury in rats. Exp Neurol 191: 251–265.
  • Koopmans GC, Deumens R, Brook G, Gerver J, Honig WM, Hamers FP and Joosten EA (2007) Strain and locomotor speed affect over‑ground locomotion in intact rats. Physiol Behav 92: 993–1001.
  • Lee JK, Schuchman EH, Jin HK and Bae JS (2012) Soluble CCL5 derived from bone marrow‑derived mesenchymal stem cells and activated by amyloid beta ameliorates Alzheimer’s disease in mice by recruiting bone marrow‑induced microglia immune responses. Stem Cells 30: 1544–1555.
  • Linda H, Piehl F, Dagerlind A, Verge VM, Arvidsson U, Cullheim S, Risling M, Ulfhake B and Hokfelt T (1992) Expression of GAP‑43 mRNA in the adult mammalian spinal cord under normal conditions and after different types of lesions, with special reference to motoneurons. Exp Brain Res 91: 284–295.
  • Nagyova  M, Slovinska  L, Blasko J, Grulova I, Kuricova  M, Cigankova  V, Harvanova D and Cizkova D (2014) A comparative study of PKH67, DiI, and BrdU labeling techniques for tracing rat mesenchymal stem cells. In Vitro Cell Dev Biol Anim 50: 656–663.
  • Nomura H, Tator CH and Shoichet MS (2006) Bioengineered strategies for spinal cord repair. J Neurotrauma 23: 496–507.
  • Novotna I, Slovinska L, Vanicky I, Cizek M, Radonak J and Cizkova D (2011) IT delivery of ChABC modulates NG2 and promotes GAP‑43 axonal regrowth after spinal cord injury. Cell Mol Neurobiol 31: 1129–1139.
  • Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J and Schrama LH (1997) B‑50, the growth associated protein‑43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 53: 627–686.
  • Oliveri RS, Bello S and Biering‑Sorensen F (2014) Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta‑analyses of rat models. Neurobiol Dis 62: 338–353.
  • Park WB, Kim SY, Lee SH, Kim HW, Park JS and Hyun JK (2010) The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci 11: 119.
  • Ritfeld GJ, Nandoe Tewarie RD, Vajn K, Rahiem ST, Hurtado A, Wendell DF, Roos RA and Oudega  M (2012) Bone marrow stromal cell‑mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell Transplant 21: 1561–1575.
  • Sandner B, Ciatipis  M, Motsch  M, Soljanik I, Weidner N, Blesch A (2016) Limited Functional Effects of Subacute Syngeneic Bone Marrow Stromal Cell Transplantation After Rat Spinal Cord Contusion Injury. Cell Transplant 25: 125–139
  • Silver J and Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5: 146–156.
  • Suzuki Y, Kitaura M, Wu S, Kataoka K, Suzuki K, Endo K, Nishimura Y and Ide C (2002) Electrophysiological and horseradish peroxidase‑tracing studies of nerve regeneration through alginate‑filled gap in adult rat spinal cord. Neurosci Lett 318: 121–124.
  • Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5: 407–413.
  • Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R and Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99: 3024–3029.
  • Tsur‑Gang O, Ruvinov E, Landa N, Holbova R, Feinberg MS, Leor J, Cohen  S (2009) The effects of peptide‑based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30: 189–195.
  • van Middendorp JJ, Barbagallo G, Schuetz M and Hosman AJ (2012) Design and rationale of a  Prospective, Observational European Multicenter study on the efficacy of acute surgical decompression after traumatic Spinal Cord Injury: the SCI‑POEM study. Spinal Cord 50: 686–694.
  • van Velthoven CT, Kavelaars A, van Bel F and Heijnen CJ (2010) Repeated mesenchymal stem cell treatment after neonatal hypoxia‑ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 30: 9603–9611.
  • Vanicky I, Urdzikova L, Saganova K, Cizkova D and Galik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18: 1399–1407.
  • Voulgari‑Kokota A, Fairless R, Karamita  M, Kyrargyri  V, Tseveleki  V, Evangelidou M, Delorme B, Charbord P, Diem R and Probert L (2012) Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 236: 161–170.
  • Vrinten, DH and Hamers, FF (2003) ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain 102: 203–209.
  • Wallace PK, Tario JD, Jr., Fisher JL, Wallace SS, Ernstoff MS and Muirhead KA (2008) Tracking antigen‑driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73: 1019–1034.
  • Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF and Yang CS (2008) Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29: 4546–4553.
  • Yan K, Zhang R, Sun C, Chen L, Li P, Liu Y, Peng L, Sun H, Qin K, Chen F, Huang W, Chen Y, Lv B, Du M, Zou Y, Cai Y, Qin L, Tang Y and Jiang X (2013) Bone marrow‑derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One 8: e84116.
  • Ying Z, Roy RR, Zhong H, Zdunowski S, Edgerton VR and Gomez‑Pinilla F (2008) BDNF‑exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 155: 1070–1078.
  • Zhang XY, La Russa VF and Reiser J (2003) Mesenchymal stem cells. Methods Mol Biol 229: 131–140.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-182ce888-0221-4b53-abf0-fa024710d9dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.