PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 76 | 06 |

Tytuł artykułu

Stress-induced anatomical changes in white and gray matter - review of literature

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Post traumatic stress disorder (PTSD) is a psychiatric abnormality caused by a drastic traumatic event or extreme stress, that exceeds the capability to adapt. There are many papers reporting anatomical brain changes induced by trauma and extreme stress, not only in white matter but in gray matter as well. Extreme stress and trauma are connected with elevation of cortisol level, which may cause damage to the hippocampus and may interfere with the anatomy of the hippocampus as well as its microstructure and cell number. Stress may inhibit the hippocampal neuroregeneration as well as hippocampal neurogenesis and even induce neuronal death within the hippocampus. Diffusor tensor imaging (DTI) is a powerful method enabling the visualization of the microstructure integrity of white matter, to evaluate the changes (rate and directionality) of water diffusion within myelin tracts and provide enhanced images of white matter tracts compared to traditional MRI morphometry images. One can evaluate the differences in white matter using fractional anisotropy (FA), which is a scalar metric of the degree of anisotropy and diffusion direction of water molecules, indicating fiber density, mylination and axon diameter. Many studies report reduced gray matter volume caused by extreme stress or trauma in people both with the diagnosis of PTSD as well as stress-exposed non PTSD in comparison to healthy controls. Studies have revealed reduced volume mostly in the hippocampus but also in regions such as anterior cingulate, corpus callosum, insula, septum pellucidum, subcallosal cortex, amygdala, prefrontal cortex and total brain volume. The right hippocampus may be prone to the effect of stress much more than the left hippocampus. Moreover, comparing trauma-exposed non-PTSD and PTSD participants, they have found volumetric abnormalities only within the right hippocampus among the PTSD group. They suggest an additional pathological process underlying PTSD, connected with the right hippocampus volume.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

76

Numer

06

Opis fizyczny

p.315-319,ref.

Twórcy

  • Chair of Human Anatomy, Department of Normal Anatomy, Medical University in Lublin, ul.Jaczewskiego 4, 20-090 Lublin, Poland
autor
  • I Clinic of Psychiatry, Psychotherapy and Early Intervention, Medical University in Lublin, ul.Gluska 1, 20-439 Lublin, Poland

Bibliografia

  • 1. Abe O., Yamasue H., Kasai K., Yamada H., Aoki S., Iwanami A., et al.: Voxelbased diffusion tensor analysis reveals aberrant anterior cingulum integrity in posttraumatic stress disorder due to terrorism. Psychiatry Res. 2006, 146, 231-242.
  • 2. Alfarez D. N., Joels M., Krugers H. J.: Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. Eur. J. Neurosci. 2003, 17, 1928-1934.
  • 3. Basser P. J., Mattiello J., LeBihan D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B. 1994, 103, 247-254.
  • 4. Bonne O., Gilboa A., Louzoun Y., Brandes D., Yona I., Lester H., Barkai G., Freedman N., Chisin R., Shalev A. Y.: Resting regional cerebral perfusion in recent posttraumatic stress disorder. Biol. Psychiatry 2003, 54, 1077-1086.
  • 5. Bremner J. D.: Does stress damage the brain? Biol. Psychiatry. 1999, 45, 797-805.
  • 6. Bremner J. D.: Traumatic stress: effects on the brain. Dialogues Clin. Neurosci. 2006, 8, 445-461.
  • 7. Brunson K. L., Eghbal-Ahmadi M., Bender R., Chen Y., Baram T. Z.: Longterm, progressive hippocampal cell loss and dysfunction induced by early life administration of corticotropin-releasing hormone reproduce the effects of early life stress. Proc. National Academy of Sciences of the United States of America 2001, 98, 8856-8861.
  • 8. Budny A., Grochowski C., Kozłowski P., et al.: Obesity as a tumour development triggering factor. Ann. Agr. Env. Med. 2019, 26, 13-23.
  • 9. Catani M.: Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr. Opin. Neurol. 2006, 19, 599-606.
  • 10. Chen L., Lui S., Wu Q. Z., Zhang W., Zhou D., Chen H. F., et al.: Impact of acute stress on human brain microstructure: an MR diffusion study of earthquake survivors. Hum. Brain. Mapp. 2013, 34, 367-373.
  • 11. Bellis M. D. De, Keshavan M., Shifflett H., Iyengar S., Beers S. R., Hall J. et al.: Brain structures in pediatric maltreatment-relatedPTSD: a sociodemographically matched study. Biol. Psychiatry. 2002, 52, 1066-1078.
  • 12. Duric V., McCarson K. E.: Hippocampal neurokinin-1 receptor and brainderived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience 2005, 133, 999-1006.
  • 13. Fani N., King T. Z., Jovanovic T., Glover E. M., Bradley B., Choi K., et al.: White matter integrity in highly traumatized adults with and without posttraumatic stress disorder. Neuropsychopharm. 2012, 37, 2740-2746.
  • 14. Fennema-Notestine C., Stein M. B., Kennedy C. M., Archibald S. L., Jernigan T. L.: Brain morphometry in female victims of intimate partner violence with and without posttraumatic stress disorder. Biol. Psychiatry. 2002, 52, 1089-1101.
  • 15. Fox R. J., Sakaie K., Lee J. C., Debbins J. P., Liu Y., Arnold D. L., et al.: A validation study of multi-center diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNRAm J. Neuroradiol. 2012, 33, 695-700.
  • 16. Gould E., Tanapat P., McEwen B. S., Flugge G., Fuchs E.: Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. 1998, 95, 3168-3171.
  • 17. Gould E., McEwen B. S., Tanapat P., Galea L. A., Fuchs E.: Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 1997, 17, 2492-2498.
  • 18. Grochowski C., Blicharska E., Baj J., Mierzwińska A., Brzozowska K., Forma A., Maciejewski R.: Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules. 2019, 24, 1361.
  • 19. Grochowski C., Blicharska E., Bogucki J., Proch J., Mierzwińska A. et al.: Increased Aluminum Content in Certain Brain Structures is Correlated with Higher Silicon Concentration in Alcoholic Use Disorder. Molecules. 2019, 24, 1721.
  • 20. Grochowski C., Radzikowska E., Maciejewski R.: Neural stem cell therapy – Brief review. Clin. Neurol. Neurosurg. 2018, 173, 8-14.
  • 21. Grochowski C., Staśkiewicz G.: Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7 T TOF-MRA sequence parameters on different MRI scanners – Literature review. Neurol. Neurochir. Pol. 2017, 51, 411-418.
  • 22. Harvey B. H., Naciti C., Brand L., Stein D. J.: Endocrine, cognitive and hippocampal/cortical 5HT 1A/2A receptor changes evoked by a time-dependent sensitisation TDS stress model in rats. Brain Res. 2003, 983, 97-107.
  • 23. Hedges D. W., Woon F. L.: Premorbid brain volume estimates and reduced total brain volume in adults with posttraumatic stress disorder: a meta-analysis. Cogn. Behav. Neurol. 2010, 23, 124-129.
  • 24. Hedges D. W., Woon F. L.: Structural magnetic resonance imaging findings in posttraumatic stress disorder and their response to treatment: a systematic review. Curr. Psychiatry Rev. 2007, 3, 85-93.
  • 25. Jackowski A. P., Douglas-Palumberi H., Jackowski M., Win L., Schultz R. T., Staib L. W., et al.: Corpus callosum in maltreatedchildren with posttraumatic stress disorder: a diffusion tensor imaging study. Psychiatry Res. 2008, 162, 256-261.
  • 26. Karl A., Schaefer M., Malta L. S., Dorfel D., Rohleder N., Werner A.: A metaanalysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Rev. 2006, 30, 1004-1031.
  • 27. Kim M. J., Lyoo I. K., Kim S. J., Sim M., Kim N., Choi N., et al.: Disrupted white matter tract integrity of anterior cingulate in trauma survivors. Neuroreport. 2005, 16, 1049-1053.
  • 28. Kitayama N., Brummer M., Hertz L., Quinn S., Kim Y., Bremner J. D.: Morphologic alterations in the corpus callosum in abuse-related posttraumatic stress disorder: a preliminary study. J. Nerv. Ment. Dis. 2007, 195, 1027-1029.
  • 29. Kitayama N., Vaccarino V., Kutner M., Weiss P., Bremner J. D.: Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J. Affect. Disord. 2005, 88, 79-86.
  • 30. McEwen B. S.: Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 2007, 87, 873-904.
  • 31. Miyata S., Hattori T., Shimizu S., Ito A., Tohyama M.: Disturbance of Oligodendrocyte Function Plays a Key Role in the Pathogenesis of Schizophrenia and Major Depressive Disorder. Biomed. Res. Inter. 2015, 492367.
  • 32. Miyata S., Taniguchi M., Koyama Y., Shimizu S., Tanaka T., Yasuno F., Yamamoto A., Iida H., Kudo T., Katayama T., Tohyama M.: Association between chronic stress-induced structural abnormalities in ranvier nodes and reduced oligodendrocyte activity in major depression. Scient. Rep. 2016, 6,23084.
  • 33. Morell P., Norton W. T.: Myelin. Sci. Am. 1980, 242, 88-90, 92, 96 passim. PMID: 6154973.
  • 34. Nagata K., Nakashima-Kamimura N., Mikami T., Ohsawa I., Ohta S.: Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2008, 34, 501-508.
  • 35. Neil J., Miller J., Mukherjee P., et al.: Diffusion tensor imaging of normal and injured developing human brain – a technical review. NMR Biomedicine. 2002, 15, 543-552.
  • 36. Neylan T. C., Schuff N., Lenoci M., Yehuda R., Weiner M. W., Marmar C. R.: Cortisol levels are positively correlated with hippocampal N-acetylaspartate. Biol. Psychiatry 2003, 54, 1118-1121.
  • 37. Paul R., Henry L., Grieve S. M., Guilmette T. J., Niaura R., Bryant R.: The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population. Neuropsychiatr. Dis. Treat. 2008, 4, 193-201.
  • 38. Pedraza O., Bowers D., Gilmore R.: Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J. Int. Neuropsychol. Soc. 2004, 10, 664-678.
  • 39. Rauch S. L., Shin L. M., Segal E., Pitman R. K., Carson M. A., McMullin K., Whalen P. J., Makris N.: Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport. 2003, 14, 913-916.
  • 40. Reuveni I., Bonne O., Giesser R., Shragai T., Lazarovits G., Isserles M., Schreiber S., Bick A. S., Levin N.: Anatomical and functional connectivity in the default mode network of post-traumatic stress disorder patients after civilian and military-related trauma. Hum. Brain. Mapp. 2016, 37, 589-599.
  • 41. Rinne-Albers M. A. W., van der Werff S. J. A., van Hoof M. J., et al.: Abnormalities of white matter integrity in the corpus callosum of adolescents with PTSD after childhood sexual abuse: a DTI study. Eur. Child Adoles. Psy. 2016, 25, 869-878.
  • 42. Sapolsky R. M.: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry. 2000, 57, 925-935.
  • 43. Sapolsky R. M., Armanini M. P., Packan D. R., Sutton S. W., Plotsky P. M.: Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Relationship to corticosteroid receptor occupancy in various limbic sites. Neuroendocrinology 1990, 51, 328-336.
  • 44. Sarkar S., Craig M. C., Dell’Acqua F., et al.: Prenatal stress and limbicprefrontal white matter microstructure in children aged 6-9 years: a preliminary diffusion tensor imaging study. World. J. Biol. Psychiatry 2014, 15, 346-352.
  • 45. Schuff N., Neylan T. C., Fox-Bosetti S., Lenoci M., Samuelson K. W., Studholme C., Kornak J., Marmar C. R., Weiner M. W.: Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res. 2008, 162, 147-157.
  • 46. Schuff N., Zhang Y., Zhan W., Lenoci M., Ching C., Boreta L., et al.: Patterns of altered cortical perfusion and diminished subcortical integrity in posttraumatic stress disorder: an MRI study. NeuroImage. 2011, 54 (Suppl. 1), S62-S68.
  • 47. Smith M. E.: Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 2005, 15, 798-807.
  • 48. Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., Cross A. H.: Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002, 17, 1429-1436.
  • 49. Teicher M. H., Dumont N. L., Ito Y., et al.: Childhood neglect is associated with reduced corpus callosum area. Biol. Psychiatry 2004, 56, 80-85.
  • 50. Tohyama M., Miyata S., Hattori T., Shimizu S., Matsuzaki S.: Molecular basis of major psychiatric diseases such as schizophrenia and depression. Anat. Sci. Int. 2015, 90, 137-143.
  • 51. Villarreal G., Hamilton D. A., Graham D. P., Driscoll I., Qualls C., Petropoulos H., et al.: Reduced area of the corpus callosum in posttraumatic stress disorder. Psychiatry Res. 2004, 131, 227-235.
  • 52. Weniger G., Lange C., Sachsse U., Irle E.: Amygdala and hippocampal volumes and cognition in adult survivors of childhood abuse with dissociative disorders. Acta. Psychiatr. Scand. 2008, 118, 281-290.
  • 53. Winter H., Irle E.: Hippocampal volume in adult burn patients with and without post-traumatic stress disorder. Am. J. Psych. 2004, 161, 2194-2200.
  • 54. Woodward S. H., Kaloupek D. G., Streeter C. C., Martinez C., Schaer M., Eliez S.: Decreased anterior cingulate volume in combat-related PTSD. Biol. Psychiatry 2006, 59, 582-587.
  • 55. Woon F. L., Sood S., Hedges D. W.: Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1181-1188.
  • 56. Yehuda R.: Biology of posttraumatic stress disorder. J. Clin. Psychiatry 2001, 62 (Suppl 17), 41-46.
  • 57. Zhang L., Zhang Y., Li L., Li Z., Li W., Ma N., et al.: Different white matter abnormalities between the first-episode, treatment-naive patients with posttraumatic stress disorder and generalized anxiety disorder without comorbid conditions. J. Affect. Disord. 2011, 133, 294-299.
  • 58. Zhao H., Xu H., Xu X., Young D.: Predatory stress induces hippocampal cell death by apoptosis in rats. Neurosci. Lett. 2007, 421, 115-120.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1828241e-043a-4edd-9b31-17cf3990820e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.