PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 62 | 4 |

Tytuł artykułu

Large-scale changes of the forestation in river channel below the dams in Southern African rivers: assessment using the Google Earth Images

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
According to the results of many studies construction of dams, their decommissioning, and sediment flushing from the reservoir have been associated with vegetation dynamics. However, factors governing the spatial changes of forestation in the floodplain below the dams have not been explored extensively. This study examined the interacting effects of dam, inflow and land-use patterns of catchment areas and other factors on downstream vegetation patterns along the downstream reaches of Southern African Rivers. A total of 105 segments of 15 rivers (16 dams) located in seven Southern African countries were studied. Areas of herbaceous and forest vegetation of river channels below a dam and land-use catchment area patterns were obtained by the Google area calculator and aerial image analysis. Forest development was the highest just below the dams, and the ratio of forest cover decreased with distance from the dam toward the river mouth. Forest coverage ratio was found to decrease with an increase in dyke distance, number as well as of inflows (r = −0.66, P <0.01) and water coverage ratio, and bare land in the river flood plain. However, a principal component analysis (PCA) showed that the proportion of bare land in the catchment area, the dyke distance of the river and the number of inflows or tributaries are the factors most associated with forestation among the studied parameters. Forestation progressively decreased following the entrance of free following tributaries below dams, which appeared to reduce the effects produced by dams on vegetation forestation by causing local deviation. The impact of different land use types, such as agriculture on forestation, was insignificant though in some cases, land use areas cause the forest area reduction.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.607-623,fig.,ref.

Twórcy

autor
  • Department of Environmental Science and Technology, Saitama University, Japan
autor
  • Department of Environmental Science and Technology, Saitama University, Japan
autor
  • Department of Environmental Science and Technology, Saitama University, Japan
  • Department of Agronomy, Bangladesh Agricultural University, Bangladesh

Bibliografia

  • Asaeda T., Baniya M.B. Rashid M.H. 2011a − Effect of floods on the growth of Phragmites japonica on the sediment bar of regulated rivers: a modelling approach − Int. J. Riv. Basin Mangag. 9: 211-220.
  • Asaeda T., Gomes P.I.A., Sakamoto K. Rashid M.H. 2011b − Tree colonization trends on a sediment bar after a major flood − River Res. Appl. 27: 976-984.
  • Asaeda T., Gomes P.I.A. Takeda E. 2010 − Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event − River Res. Appl. 26: 960-976.
  • Asaeda T. Rajapakse L. 2008 − Effects of spates of different magnitudes on a Phragmites japonica population on a sandbar of a frequently disturbed river − River Res. Appl. 24: 1310-1324.
  • Asaeda T. Rashid M.H. 2010 − Effects of hydrological changes on algal blooming in the reservoir and the required modification for treatments − Proc. 8th Int. Sympos. Hydrol. pp. 91-97.
  • Asaeda T. Rashid M.H. 2012 − The impacts of sediment released from dams on downstream sediment bar vegetation − J. Hydrol. 430-431: 25-38.
  • Asaeda T., Rashid M.H., Kotagiri S. Uchida T. 2011c − The role of soil characteristics in the succession of two herbaceous lianas in a modified river floodplain − River Res. Appl. 27: 591-601.
  • Asaeda T., Siong K., Kawashima T. Sakamoto K. 2009 − Growth of Phragmites japonica on a sandbar of regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate − River Res. Appl. 25: 874-891.
  • Azami K., Saito H., Kodama N. Watanabe M. 2001 − Vegetation changes in the downstream floodplains of the Miharu Dam along the Ohtakine River in Fukushima Prefecture, north-east Japan − Veg. Sci. 18: 1-12.
  • Azami K., Suzuki H. Toki S. 2004 − Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan − River Res. Appl. 20: 549-563.
  • Bakker M.M., Govers G., van Doorn A., Quetier F., Chouvardas D. Rounsevell M. 2008 − The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern − Geomorphol. 98: 213-226.
  • Barbosa R.I. Campos C. 2011 − Detection and geographical distribution of clearing areas in the savannas (‘lavrado) of Roraima using Google Earth web tool − J. Geogr. Reg. Plann. 4: 122-136.
  • Bejarano M.D., Nilsson C., Tanago M.G.D. Marchamalo M. 2011 − Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern Sweden − Freshw. Biol. 56: 853-866.
  • Bendix J. Hupp C.R. 2000 − Hydrological and geomorphological impacts on riparian plant communities − Hydrol. Process. 14: 2977- 2990.
  • Beumer V., van Wirdum G., Beltman B., Griffioen J., Grootjans A.P., Verhoeven J.T.A. 2008 − Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands − Sci. Total Environ. 402: 70-81.
  • Birken A.S. Cooper D.J. 2006 − Processes of Tamarix invasion and floodplain development along the lower Green River, Utah − Ecol. Appl. 16: 1103-1120.
  • Bornette G. Amoros C. 1996 − Disturbance regimes and vegetation dynamics: role of floods in riverine wetlands − J. Veg. Sci. 7: 615-622.
  • Briffa K., Schweingruber F., Jones P., Osborn T., Shiyatov S. Vaganov E. 1998 − Reduced sensitivity of recent tree-growth to temperature at high northern latitudes − Nature, 391: 678-682.
  • Cooper D.J., Andersen D.C., Chimner R.A. 2003 − Multiple pathways for woody plant establishment on floodplains at local to regional scales − J. Ecol. 91: 182-196.
  • DeWine J.M., Cooper D.J. 2007 − Effects of river regulation on riparian box elder (Acer negundo) forests in canyons of the Upper Colorado River Basin, USA − Wetlands, 27: 278- 289.
  • Duhl T.R., Guenther A., Helmig D. 2012 − Estimating urban vegetation cover fraction using Google Earth® images − J. Land Use Sci. 7: 311-329.
  • Franklin S.B., Pezeshki R.S., Scheff T.L., Kupfer J.A., Hanson R.A., Gentry R.W. 2001 − A comparison of hydrology and vegetation between a channelized stream and a nonchannelized stream in western Tennessee − Phys. Geogr. 22: 254-274.
  • Friedman J.M., Osterkamp W.R., Scott M.L., Auble G.T. 1998 − Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the great plains − Wetlands, 18: 619-633.
  • Gordon E., Meentemeyer R.K. 2006 − Effects of dam operation and land use on stream channel morphology and riparian vegetation − Geomorphol. 82: 412-429.
  • Hu Q., Wu W., Xia T., Yu Q., Yang P., Li Z., Song Q. 2013 − Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping − Remote Sens. 5: 6026-6042.
  • Ishida S., Nakashizuka T., Gonda Y., Kamitani T. 2008 − Effects of flooding and artificial burning disturbances on plant species composition in a downstream riverside floodplain − Ecol. Res. 23: 745-755.
  • Kaimaris D., Georgoula O., Patias P., Stylianidis E. 2011 − Comparative analysis on the archaeological content of imagery from Google Earth − J. Cult. Herit. 12: 263-269.
  • Knox J.C. 2001 − Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley − CATENA, 42: 193-224.
  • Koskela E., Amacher G.S., Ollikainen M. 2004 − Deforestation, Production Intensity and Land Use under Insecure Property Rights. http:// papers.ssrn.com/sol3/papers.cfm?abstract_ id=516262. Accessed on 28 January 2014.
  • Magilligan F.J., Nislow K.H., Graber B.E. 2003 − Scale-independent assessment of discharge reduction and riparian disconnectivity following flow regulation by dams − Geology, 31: 569-572.
  • Malhi Y., Roberts J.T., Betts R.A., Killeen T.J., Li W., Nobre C.A. 2008 − Climate change, deforestation, and the fate of the Amazon − Science, 319: 169-172.
  • Marston R.A., Mills J.D., Wrazien D.R., Bassett B., Splinter D.K. 2005 − Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA − Geomorphol. 71: 79-98.
  • Mering C., Baro J., Upegui E. 2010 − Retrieving urban areas on Google Earth images: application to towns of West Africa − Int. J. Remote Sens. 31: 5867-5877.
  • Merritt D.M., Cooper D.J. 2000 − Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA − Regul. Rivers: Res. Mgmt. 16: 543-564.
  • Montgomery D.R., MacDonald L.H. 2002 − Diagnostic approach to stream channel assessment and monitoring − J. Am. Water Resour. Assoc. 38: 1-16.
  • Mossa J., McLean M. 1997 − Channel planform and land cover changes on a mined river floodplain: Amite River, Louisiana, USA − Appl. Geogr. 17: 43-54.
  • Naiman R., Décamps H., McClain M. 2005 − Riparia: Ecology, Conservation, and Management of Streamside Communities − Academic Press, 448 pp.
  • Nilsson C., Reidy C.A., Dynesius M., Revenga C. 2005 − Fragmentation and flow regulation of the world’s large river systems − Science, 308: 405-408.
  • Osterkamp W., Hupp C. 1984 − Geomorphic and vegetative characteristics along three northern Virginia streams − Geol. Soc. Am. Bull. 95: 1093-1101.
  • Osterkamp W., Scott M.L., Auble G.T. 1998 − Downstream effects of dams on channel geometry and bottomland vegetation: regional patterns in the Great Plains − Wetlands, 18: 619-633.
  • SAGE 2010 − Center for Sustainability and the Global Environment, Gaylord Nelson Institute for Environmental Studies, University of Wisconsin-Madison. http://www.sage. wisc.edu/riverdata/scripts/world_map_med. php?qual=32&newxy=?422,92. Accessed on 10/02/2014.
  • Schwinning S., Weiner J. 1998 − Mechanisms determining the degree of size asymmetry in competition among plants − Oecologia, 113: 447-455.
  • Sheppard S.R., Cizek P. 2009 − The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation − J. Environ. Manag. 90: 2102-2117.
  • Smith D.G. 1976 − Effect of vegetation on lateral migration of anastomosed channels of a glacier meltwater river − Geol. Soc. Am. Bull. 87: 857-860.
  • Stanford J., Lorang M., Hauer F. 2005 − The shifting habitat mosaic of river ecosystems − Proc. Int. Assoc. Theor. Appl. Limnol. 29: 123-136.
  • Thomas D. 1996 − Dam construction and ecological change in the riparian forest of the Hadejia-Jama’are floodplain, Nigeria − Land Degrad. Dev. 7: 279-295.
  • Tockner K., Stanford J.A. 2002 − Riverine flood plains: Present state and future trends − Environ. Conserv. 29: 308-330.
  • Urban M.A., Rhoads B.L. 2003 − Catastrophic human-induced change in stream-channel planform and geometry in an agricultural watershed, Illinois, USA − Ann. Assoc. Am. Geogr. 93: 783-796.
  • Van Oost K., Govers G., Desmet P. 2000 − Evaluating the effects of changes in landscape structure on soil erosion by water and tillage − Landsc. Ecol. 15: 577-589.
  • Vanacker V., Molina A., Govers G., Poesen J., Dercon G., Deckers S. 2005 − River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems − Geomorphol. 72: 340- 353.
  • Wood P.J., Armitage P.D. 1997 − Biological effects of fine sediment in the lotic environment − Environ. Manag. 21: 203-217.
  • Worldclim 2005 − WorldClim-Global Climate Data. Free climate data for ecological modeling and GIS. http://www.worldclim.org. Accessed on 10/03/2014.
  • Yagisawa J., Tanaka N. 2010 − Flood wash-out conditions of an exotic and invasive plant, Eragrostis curvula, in Arakawa River, Japan − Int. J. Riv. Basin Mangag. 8: 15-24.
  • Yu L., Gong P. 2012 − Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives − Int. J. Remote Sens. 33: 3966–3986.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-17d96982-4309-4d7f-9699-d159fa7c3b71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.