PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |
Tytuł artykułu

A pseudo-comprehensive LCA carbon footprint model for fossil fuel power plants (an Iranian case)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an LCA model to estimate the carbon footprint of a fossil fuel power plant for better policy implementation in an energy portfolio. The frameworks of the proposed model have integrated two groups of parameters (parameters affecting emissions and parameters affecting the amount of electricity) into one model. The model is developed to handle three types of power plants: gas turbine, combined cycle, and steam power with different fuel types and different utility transfer policies. The model is verified with two case studies in Iran. The results show good agreement between the model output and existing conditions.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
26
Numer
5
Opis fizyczny
p.1975-1980,fig.,ref.
Twórcy
autor
  • University of Tehran, Ghods St., Enghelab Ave, Tehran, Iran
  • University of Tehran, Ghods St., Enghelab Ave, Tehran, Iran
autor
  • University of Tehran, Ghods St., Enghelab Ave, Tehran, Iran
Bibliografia
  • 1. International Energy Agency, CO₂ Emissions from Fuel Combustion HIGHLIGHTS, International energy agency, 2014.
  • 2. Brizmohun R., Ramjeawon T., Azapagic A. Life cycle assessment of electricity generation on Mauritius. Journal of Cleaner Production, 106, 565, 2015.
  • 3. Treyer K., Bauer C. The environmental footprint of UAE’s electricity sector: combining life cycle assessment and scenario modeling. Renewable and sustainable energy review, 55, 1234, 2016.
  • 4. Viskovic A., Franki V. Status of Croatia’s energy sector framework: progress, potential, challenges and recommendations. Thermal Science. 19, 751, 2015.
  • 5. Atilgan B., Azapagic A. An integrated life cycle sustainability assessment of electricity generation in turkey. Energy Policy. 93, 168, 2016.
  • 6. Georgakellos A.D. Climate change external cost appraisal of electricity generation systems from a life cycle perspective: the case of Greece. Journal of Cleaner production. 32, 124, 2012.
  • 7. Bozic V., Cvetkoic S., Zivkovic B. Influence of renewable energy sources on climate change mitigation in Serbia. Thermal Science. 19, 411, 2014.
  • 8. ISO, Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification and communication. International Organization for Standardisation, Geneva, Switzerland. 2013.
  • 9. IPCC, Climate Change: Mitigation. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. United Kingdom and NewYork, NY, USA. 2014.
  • 10. IPCC, IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Japan, Tokyo, 2006.
  • 11. Li F. A Cost Analysis of Carbon Dioxide Emission Reduction Strategies for New Plants in Michigan’s Electric Power Sector. PhD thesis, Michigan Technology University. Michigan, USA, 2014,
  • 12. Więk A., Tkacz T. Carbon Footprint: an Ecological Indicator in Food Production. Pol. J. Environ. Stud. 22, 53, 2013.
  • 13. Raj R., Ghandehariun S., Kumar A., Linwei M. A well to wire life cycle assessment of Canadian shale gas for electricity generation in China. Energy. 111, 642, 2016.
  • 14. Kehlhofer R., Hannemann F., Stirnimann F., Rukes B. Gas and steam turbine power plants, PennWell, Oklahama, 2009.
  • 15. Iran Parliament, http://rc.majlis.ir/fa/news/show/883581
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-17d36324-f7d5-4b87-b7fa-5bdb95e0338a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.