Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 6 |

Tytuł artykułu

Interaction of liming and earthworm humus in detoxification of soil contaminated with excess copper

Warianty tytułu

Języki publikacji



The effect of liming on uptake of copper by white mustard (Sinapis alba L.) was evaluated when applied alone or in conjunction with earthworm humus in detoxification of light (sandy) soil polluted with excess copper. The study consisted of two-factor pot trials (first-rate factor – degree of soil contamination: 0, 75, 150, 300, and 450 mg Cu・kg⁻¹ of soil; second-rate factor – variants of application of CaCO₃ and earthworm humus (EH)). In the absence of any remedial treatment, phytotoxicity of copper at a concentration of 75 mg Cu・kg⁻¹ decreased the mustard yield by 60%, while at 150 mg Cu・kg⁻¹ the loss of yield was over 90% compared to natural soil. Both CaCO₃ and EH reduced Cu uptake. High effectiveness of liming with a CaCO₃ dose according to double hydrolytic acidity (2 Hh) in detoxification of the analyzed soil was demonstrated. Simultaneous introduction of EH in the amount of 1.5% of soil weight resulted in Cu uptake reduction and the same metal concentration decrease in plant foliage tissues. The highest value of plant tolerance index (yield on polluted soil/yield on control soil), was obtained under joint application of CaCO₃ according to 2 Hh+EH 1.5%. Indices of Cu bioaccumulation (increase of Cu concentration in plant/increase of Cu concentration in soil), tend to decrease as soil contamination increases, implicating a depressed ability of white mustard plants to accumulate this element in its aerial parts.

Słowa kluczowe








Opis fizyczny



  • Institute of Soil Science and Plant Cultivation, National Research Institute in Puławy, Department of Weed Science and Tillage Systems in Wrocław, Orzechowa 61, 50-540 Wrocław, Poland
  • Institute of Soil Science and Plant Cultivation, National Research Institute in Puławy, Department of Weed Science and Tillage Systems in Wrocław, Orzechowa 61, 50-540 Wrocław, Poland


  • 1. GRAY C.W., DUNHAM S.J., DENNIS P.G., ZHAO F.J., MCGRATH S.P. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 42, (3), 530. 2006.
  • 2. MULLIGAN C.N., YONG R.N., GIBBS B.F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol., 60, (1-4), 193, 2001.
  • 3. BASTA N. T., McGOWEN S. L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut., 127, (1), 73, 2004.
  • 4. KHAN M.J., JONES D.L. Effect of composts, lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil. Pedosphere. 19, (5), 631, 2009.
  • 5. ALVARENGA P., GONCALVES A.P., FERNANDES R.M., DE VARENNES A., VALLINI G., DUARTE E., CUNHA-QUEDAB A.C. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci. Tot. Environ., 406, (1-2), 15, 43, 2008.
  • 6. ADHIKARI T., MANDAL B. Effect of lime and organic matter on distribution of zinc, copper, iron, and manganese in acid soils. Commun. Soil Sci. Plant Anal., 30, (13&14), 1819, 1999.
  • 7. CARRASQUERO A., FLORES I. Cadmium binding by humic acids. An experiment in FTIR spectroscopy and soil chemistry. Chem. Edu., 9, 1, 2004.
  • 8. CARRASQUERO A., FLORES I., PEROZO C., PERNALETE Z. Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinenis var. Apure) uptake. Int. J. Enviorn. Sci. Technol. 3, (3), 203, 2006.
  • 9. FERTILIZATION RECOMMENDATIONS. Part I. Threshold values for evaluation of the soil content of macroand micronutrients. Collective work. IUNG, Puławy. P (44), 1, 1990 [In Polish].
  • 10. METHODS OF LABORATORY ASSAYS IN AGROCHEMICAL STATIONS. Part I. Soil tests. Part II. Plant material tests. IUNG, Puławy. 1980 [In Polish].
  • 11. DAVIS R.D., BECKETT P.H. Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil., 49, 398, 1978.
  • 12. KIEKENS L., CAMERLYNCK R. Determination of upper critical level heavy metals in plants. Prot. VDLUFA Kongress, Munster. pp. 255-261, 1992.
  • 13. NEAMAN A., REYES L., TROLARD F., BOURRIE G., SAUVED S. Copper mobility in contaminated soils of the Puchuncavi Valley, central Chile. Geoderma. 150, (3-4), 359, 2009.
  • 14. RIJKENBERG M.J.A., DEPREE C.V. Heavy metal stabilization in contaminated road-derived sediments. Sci. Total Environ. 408, 1212, 2010.
  • 15. GUNKEL P., JEZEQUEL K., FABRE B. Temporal evolution of copper distribution in soil fractions, influence of soil pH and organic carbon level on copper distribution. Environ. Technol. 23, (9), 1001, 2002.
  • 16. MA Y., LOMBI E., NOLAN A. L., McLAUGHLIN M. J. Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics. Environ. Toxic. Chem., 25, 652, 2006.
  • 17. TANSUPO P., BUDZIKIEWICZ H., CHANTHAI S., RUANGVIRIYACHAI C. Effect of pH on the mobilization of copper and iron by pyoverdin I in artificially contaminated soils. Science Asia, 34, 287, 2008.
  • 18. LOMBI E., HAMON R. E., McGRATH S. P., McLAUGHLIN M. J. Lability of Cd, Cu, and Zn in Polluted Soils Treated with Lime, Beringite, and Red Mud and Identification of a Non-Labile Colloidal Fraction of Metals Using Isotopic Techniques. Environ. Sci. Technol. 37, (5), 979, 2003.
  • 19. ZHOU L.X., WONG J.W.C. Effect of Dissolved Organic Matter from Sludge and Sludge Compost on Soil Copper Sorption. J. Environ. Qual. 30, (3), 878, 2001.
  • 20. ELKHATIB E.A., MAHDY A.M., SALEH M. E., BATAKAT N.H. Kinetics of copper desorption from soils as affected by different organic ligands. Int. J. Environ. Sci. Tech., 4, (3), 331, 2007.
  • 21. KYZIOŁ J. Sorption and force of binding of some heavy metal ions to organic substance: a case study of peat. Ed. PAN. Zabrze. pp. 1-97, 2002 [In Polish with English Summary].
  • 22. SINGH B.R., OSTE L. In situ immobilization of metals in contaminated or naturally metal-rich soils. Environ. Rev. 9, (2), 81, 2001.
  • 23. USMAN A.R.A., KUZYAKOV Y., LORENZ K., STAHR K. Remediation of a soil contaminated with heavy metals by immobilizing compounds. J. Plant Nutr. Soil Sci. 169, 205, 2006.
  • 24. WROBEL S., HRYŃCZUK B., NOWAK K. Organic fertilization and soil deacidification as the remission factors of copper phytotoxicity. Zesz. Probl. Post. Nauk Rol. 506, 541, 2005 [In Polish with English Summary].
  • 25. NEAMAN A., REYES L., TROLARD F., BOURRIE G., SAUVE S. Copper mobility in contaminated soils of the Puchuncavi valley, central Chile. Geoderma, 150, (3-4), 359, 2009.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.