EN
The remediation of heavy metal-contaminated sites using plants is a promising alternative to current methodologies. In this study, small-scale wetlands were constructed to search for new plant species that are suitable and hold potential for phytoremediation of heavy metalcontaminated wastewater originating from an electroplating plant. Ten macrophyte species [Phragmites australis (Cav.) Trin., Typha orientalis Presl, Lythrum salicaria Linn., Arundo donax Linn. var. versicolor Stokes, Typha minima Funk, Juncus effusus L., Pontederia cordata L., Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth., Acorus calamus Linn., and Iris pseudacorus Linn.] were investigated and compared for their shapes, biomass, roots, and ability to accumulate heavy metals. Acorus calamus Linn., T. orientalis Presl, P. australis (Cav.) Trin., T. minima Funk, and L. salicaria Linn. exhibited the highest levels of metal tolerance, whereas P. cordata L., I. pseudacorus Linn., and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had the lowest. Some plants accumulated higher concentrations of metals in the tissues compared with other species such as T. minima Funk, P. australis (Cav.) Trin., L. salicaria Linn., A. donax Linn. var. versicolor Stokes, P. cordata L., and A. calamus Linn., whereas T. orientalis Presl and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had poor capacity to accumulate heavy metals. The results showed that, of the 10 species, P. australis (Cav.) Trin., A. calamus Linn., T. minima Funk, and L. salicaria Linn. are the most suitable and promising plant materials for phytoremediation of heavy metal-contaminated wastewater.