PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 18 | 1 |

Tytuł artykułu

Influence of putative endophytic strains of Bacillus spp. on some maize (Zea mays l. subsp. mays) and wheat (Triticum aestivum l.) features in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

http://www.ejpau.media.pl/volume18/issue1/art-05.html

Twórcy

autor
  • Agricultural Microbiology Lab, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-375 Wroclaw, Poland
autor
  • Agricultural Microbiology Lab, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-375 Wroclaw, Poland

Bibliografia

  • Åström B., Gerhardson B., 1988. Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant Soil, 109, 263–269.
  • Alström S., Burns R.G., 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils, 7, 232–238.
  • Andrade L.F., de Souza G.L., Nietsche S., Xavier A.A., Costa M.R., Cardoso A.M., Pereira M.C., Pereira D.F., 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J. Microbiol., 52, 27–34.
  • Babu A.G., Kim J.D., Oh B.T., 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard Mater., 250–251, 477–483.
  • Bacon C.W, Hinton D.M., 2007. Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis.Biocontrol Sci. Techn., 17, 81–94.
  • Begonia M.F.T., Kremer R.J., Stanley L., Jamshedi A., 1990. Association of bacteria with velvetleaf roots. Trans. Missouri Acad. Sci., 24, 17–26.
  • Bergstrom G., da Luz W.C., 2005. Biocontrol for plants with Bacillus subtilis, Pseudomonas putida, and Sporobolomyces roseus. US patent No. 6896883 B2.
  • Carrim A.J.I., Barbosa E.C., Vieira J.D.G., 2006. Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz. Arch. Biol. Technol., 49, 353–359.
  • Chang W.T., Chen Y.C., Jiao C.L., 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technol., 98, 1224–1230.
  • Cho K.M., Hong S.Y., Lee S.M., Kim Y.H., Kahng G.G., Lim Y.P., Kim H., Yun H.D., 2007. Endophytic bacterial communities in Ginseng and their antifungal activity against pathogens. Microb. Ecol., 54, 341–351.
  • Compant S., Duffy B., Nowak J., Clement Ch., Ait Barka E., 2005a. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol., 71, 4951–4959.
  • Compant S., Reiter B., Sessitsch A., Nowak J., Clement C., Ait Barka E., 2005b. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol., 71, 1685–1693.
  • Driks A., 2004. The Bacillus spore coat. Phytopathology, 94, 1249–1251.
  • Elbeltagy A., Nishioka K., Sato T., Suzuki H., Ye B., Hamada T., Isawa T., Mitsui H., Minamisawa K., 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbiol., 67, 5285–5293.
  • Elliott L.F., Lynch J.M., 1984. Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem., 16, 69–71.
  • Fang R., Lin J., Yao S., Wang Y., Wang J., Zhou C., Wang H., Xiao M., 2013. Promotion of plant growth, biological control and induced systemic resistance in maize by Pseudomonas aurantiaca JD37. Ann. Microbiol., 63, 1177–1185.
  • Fredrickson J.K., Elliott L.F., 1985. Colonisation of winter wheat roots by inhibitory rhizobacteria. Soil Sci. Soc. Am. J., 49, 1172–1177.
  • Gordon S.A., Weber R.P., 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol., 26, 192–195.
  • Heins S.D., Manker D.C., Jimenez D.R., McCoy R.J, Marrone P.G.., Orjala J.E., 2000. Strain of bacillus for controlling plant diseases and corn rootworm. US patent 6060051 A.
  • Ikeda A.C., Bassani L.L., Adamoski D., Stringari D., Cordeiro V.K., Glienke C., Steffens M.B., Hungria M., Galli-Terasawa L.V., 2013. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb. Ecol., 65, 154–160.
  • Jacobsen B.J., Zidack N.K., Larson B.J., 2004. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology, 94, 1272–1275.
  • Kumar A., Prakash A., Johri B.N., 2011. Bacillus as PGPR in crop ecosystem. D.K. Maheshwari (ed.), Bacteria in Agrobiology: Crop Ecosystems, Springer-Verlag, Berlin Heidelberg, 44–45.
  • Lin T., Chen C.L., Chang L.K., Tschen J.S., Liu S.T., 1999. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol., 181, 5060–5067.
  • Long H.H., Schmidt D.D., Baldwin I.T., 2008. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE, 3, e2702.
  • Martinez-Morales L.J., Soto-Urzua L., Baca B.E., Sanchez-Ahedo J.A., 2003. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol. Lett., 228, 167–173.
  • Mehta P., Chauhan A., Mahajan R., Mahajan P.K., Shirkot C.K., 2010. Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Curr. Sci. India, 98, 538–542.
  • Melnick R.L., Zidack N.K., Bailey B.A., Maximova S.N., Guiltinan M., Backman P.A. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol. Control., 46, 46–56.
  • Montaneza A., Blanco A.R., Barlocco C., Beracochea M., Sicardi M., 2012. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl. Soil Ecol., 58, 21–28.
  • Nehl D.B, Allen S.J., Brown J.F., 1997. Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil Ecol., 5, 1–20.
  • Paz I.C.P., Santin R.C.M., Guimarães A.M., Rosa O.P.P., Dias A.C.F., Quecine M.C., Azevedo J.L., Matsumura A.T.S. 2012. Eucalyptus growth promotion by endophytic Bacillus spp. Genet. Mol. Res., 11, 3711–3720.
  • Pietr S.J., 1990. Wpływ saprofitycznej mikroflory ryzosfery na wzrost roślin [The influence of saprophytic rhizosphere microflora on plant growth]. Post. Nauk Rol., 29, 19–38 [in Polish].
  • Pisarska K., 2013. Analiza zróżnicowania bakterii endofitycznych zasiedlających różne odmiany kukurydzy, Zea mays L. [Analysis of bacterial endophytes diversity colonizing the different cultivars of maize, Zea mays L.]. PhD thesis, Wroclaw University of Environmental and Life Sciences [in Polish].
  • Puente M.E., Ching Y. Li, Bashan Y., 2009. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot., 66, 402–408.
  • Ruiz C., Blanco A., Pastor F.I.J., Diaz P., 2002. Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4. Bacterial lipase. FEMS Microbiol. Lett., 217, 263–267.
  • Ryan R.P., Germaine K., Franks A., Ryan D.J., Dowling D.N., 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett., 278, 1–9.
  • Sarwar M., Kremer R.J., 1994. Enhanced suppression of plant growth through production of L-tryptophan derived compounds by deleterious rhizobacteria. Plant Soil, 172, 261–269.
  • Senthilkumar M., Swarnlakshmi K., Govindasamy V., Lee Y.K., Annapurna K. 2009. Biocontrol potential of soybean bacterial endophytes against charcoal root fungus Rhizoctonia bataticola. Curr. Microbiol., 58, 288–293.
  • Spaepen S., Vanderleyden J., Remans R., 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev., 31, 425–448.
  • Stein T., 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol., 56, 845–857.
  • Surette M.A., Sturz A.V., Lada R.R, Nowak J., 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil, 253, 381–390.
  • Utkhede R.S., Sholberg P.L, 1986. In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogenes and in vivo control of two postharvest cherry diseases. Can. J. Microbiol., 32, 963–967.
  • Wang H., Wen K., Zhao X., Wang X., Li A., Hong H., 2009. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protec., 28, 634–639.
  • Xu M., Sheng J., Chen L., Men Y., Gan L., Guo S., Shen L., 2014. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J. Microb. Biot., 30, 835–845.
  • Yao S., Gao X., Fuchsbauer N., Hillen W., Vater J., Wang J.S., 2003. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr. Microbiol., 47, 272–277.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-17052739-a2ce-49f3-a1f8-0b2bbd8da509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.