PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 82 | 3 |

Tytuł artykułu

Glacial refugia and migration routes of the Neotropical genus Trizeuxis (Orchidaceae)

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The morphology and anatomy of the monotypic genus Trizeuxis make this taxon almost impossible to recognize in fossil material and hereby difficult object of historical geographic studies. To estimate the distribution of potential refugia during the last glacial maximum and migration routes for Trizeuxis the ecological niche modeling was performed. The potential niche modeling was done using maximum entropy method implemented in Maxent application based on the species presence-only observations. As input data climatic variables and the digital elevation model were used. Two models of suitable glacial habitats distribution were prepared – for the studied species and for its host. The compiled map of the suitable habitats distribution of T. falcata and P. guajava during the last glacial maximum (LGM) indicate two possible refugia for the studied orchid genus. The first one was located in the Madre de Dios region and the other one in the Mosquito Coast. The models suggest the existence of two migration routes of Trizeuxis species. The results indicate that the ecological niche modeling (ENM) is a useful tool for analyzing not only the possible past distribution of the species, but may be also applied to determine the migration routes of the organisms not found in the fossil material.

Wydawca

-

Rocznik

Tom

82

Numer

3

Opis fizyczny

p.225-230,fig.,ref.

Twórcy

  • Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland

Bibliografia

  • 1. Lindley J. Trizeuxis falcata. Collect Bot. 1821;1:t.2.
  • 2. Schlechter R. Orchideenfloren der Suedamerikanischen Kordillerenstaaten, V. Bolivia. Feddes Repert Beih. 1922;10:52.
  • 3. Schweinfurth C. Orchidaceae, Orchids of Peru. Fieldiana Bot. 1960;30(3):784–785.
  • 4. Dressler RL, Dodson CH. Classification and phylogeny in the Orchidaceae. Ann Mo Bot Gard. 1960;47:25–68.
  • 5. Szlachetko DL. Systema Orchidalium. Fragm Flor Geobot. 1995;3 suppl:1–152.
  • 6. Neubig KM, Whitten WM, Williams NH, Blanco MA, Endara L, Burleigh JG, et al. Generic recircumscriptions of Oncidiinae (Orchidaceae:Cymbidieae) based on maximum likelihood analysis of combinedDNA datasets. Bot J Linn Soc. 2012;168(2):117–146. http://dx.doi.org/10.1111/j.1095-8339.2011.01194.x
  • 7. Dodson CH, Dodson PM. Trizeuxis falcata. In: Dodson CH, editor. Orchids of Ecuador. Sarasota: The Marie Selby Botanical Gardens; 1980.p. 350. [vol 1(4)].
  • 8. Van der Cingel NA. An atlas of Orchid pollination: America, Africa, Asia and Australia. Rotterdam: A.A. Balkema Publishers; 2001.
  • 9. Stern WL, Carlsward BS. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae). Bot J Linn Soc.2006;152(1):91–107. http://dx.doi.org/10.1111/j.1095-8339.2006.00548.x
  • 10. Carstens BC, Richards CL. Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution. 2007;61(6):1439–1454.http://dx.doi.org/10.1111/j.1558-5646.2007.00117.x
  • 11. Marske KA, Leschen RAB, Buckley TR. Reconciling phylogeography and ecological niche models for New Zealand beetles: looking beyondglacial refugia. Mol Phylogenet Evol. 2011;59(1):89–102. http://dx.doi.org/10.1016/j.ympev.2011.01.005
  • 12. Peterson AT, Nyári AS. Ecological niche conservatism and Pleistocene refugia in the Thrush-like Mourner, Schiffornis sp., in the neotropics. Evolution. 2008;62(1):173–183. http://dx.doi.org/10.1111/j.1558-5646.2007.00258.x
  • 13. Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP. Locating pleistocene refugia: comparing phylogeographic and ecologicalniche model predictions. PLoS ONE. 2007;2(6):e563. http://dx.doi.org/10.1371/journal.pone.0000563
  • 14. Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23(10):564–571. http://dx.doi.org/10.1016/j.tree.2008.06.010
  • 15. Svenning JC, Normand S, Kageyama M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol.2008;96(6):1117–1127. http://dx.doi.org/10.1111/j.1365-2745.2008.01422.x
  • 16. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The last glacial maximum. Science. 2009;325(5941):710–714. http://dx.doi.org/10.1126/science.1172873
  • 17. Harvey PH, Pagel MD. The comparative method in evolutionary biology. Oxford: Oxford University Press; 1991.
  • 18. Prinzing A, Durka W, Klotz S, Brandl R. The niche of higher plants: evidence for phylogenetic conservatism. Proc Biol Sci. 2001;268(1483):2383–2389. http://dx.doi.org/10.1098/rspb.2001.1801
  • 19. Cooper N, Freckleton RP, Jetz W. Phylogenetic conservatism of environmental niches in mammals. Proc Biol Sci. 2011;278(1716):2384–2391.http://dx.doi.org/10.1098/rspb.2010.2207
  • 20. Lavergne S, Evans MEK, Burfield IJ, Jiguet F, Thuiller W. Are species’ responses to global change predicted by past niche evolution? Phil TransR Soc Lond B. 2013;368(1610):20120091. http://dx.doi.org/10.1098/ rstb.2012.0091
  • 21. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, et al. Phylogenetic biome conservatism on a global scale. Nature. 2009;458(7239):754–756. http://dx.doi.org/10.1038/nature07764
  • 22. Pridgeon AM, Cribb P, Chase MW, Rasmussen FN. Genera Orchidacearum. Volume 4: Epidendroideae. Oxford: Oxford University Press; 2005.
  • 23. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43–57.http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
  • 24. Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first internationalconference on Machine learning. New York NY: ACM; 2004. p. 655–662.
  • 25. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3–4):231–259.http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
  • 26. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a testcase using cryptic geckos in Madagascar. J Biogeogr. 2007;34(1):102–117.http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x
  • 27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Clim. 2005;25(15):1965–1978. http://dx.doi.org/10.1002/joc.1276
  • 28. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, be-Ouchi A, et al. Results of PMIP2 coupled simulations of the Mid- Holocene and Last Glacial Maximum. Part 1: experiments and large-scale features. Clim. 2007;3(2):261–277. http://dx.doi.org/10.5194/cp-3-261-2007
  • 29. Urbina-Cardona JN, Loyola RD. Applying niche-based models to predict endangered-hylid potential distributions: are neotropical protected areaseffective enough. Trop Conserv Sci. 2008;1(4):417–445.
  • 30. Olson JS, Watts JA, Allison LJ, United States Dept of Energy Office of Basic Energy Sciences Carbon Dioxide Research Division, Oak RidgeNational Laboratory, Union Carbide Corporation, et al. Carbon in livevegetation of major world ecosystems. Washington DC: U.S. Departmentof Energy; 1983.
  • 31. Arditti J. Fundamentals of orchid biology. New York NY: Wiley; 1992.
  • 32. Yam TW, Yeung EC, Ye XL, Arditti J. Orchid embryos. In: Kull T, Arditti J, editors. Orchid biology VIII – reviews and perspectives. Dordrecht: Kluwer Academic Publishers; 2002. p. 287–385.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1704abc0-cdd3-4f29-899f-5136e611f147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.