PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |

Tytuł artykułu

Transformation of PttKN1 gene to cockscomb

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We have established a shoot regeneration system and genetic transformation of cockscomb (Celosia cristata and Celosia plumosus). The best results in terms of frequency of shoot regeneration and number of shoot buds per explant are observed on media supplemented with 0.5 mg l⁻¹ 6-BA (for explants of apical meristems of C. cristata) or 2.0 mg l⁻¹ 6-BA, 0.5 mg l⁻¹ NAA and 0.5 mg l⁻¹ IAA (for hypocotyls explants of C. plumosus). We use apical meristems of C. cristata and hypocotyls of C. plumosus as the starting material for transformation. A novel KNOTTED1-like homeobox1 (KNOX), PttKN1 (Populus tremula × P. tremuoides knotted1) isolated from the vascular cambial region of hybrid aspen, is introduced into cockscomb by Agrobacterium. A series of novel phenotypes are obtained from the transgenic cockscomb plants, including lobed or rumpled leaves, partite leaves and two or three leaves developed on the same petiole, on the basis of their leaf phenotypes. Transformants are selected by different concentrations of kanamycin. Transformants are confirmed by PCR of the NptII gene and PCR or RT-PCR of PttKN1 gene. Furthermore, RT-PCR shows that 35S:: PttKN1 RNA levels do not correlate with phenotypic severity. It is discussed that our results bring elements on possible function of PttKN1 gene. To our knowledge, genetic transformation of cockscomb is first reported.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

4

Opis fizyczny

p.683-691,fig.,ref.

Twórcy

autor
  • School of Life Science, Lanzhou University, 730000 Lanzhou, China
  • College of Life Science and Biotechnology, Tongji University, 200092 Shanghai, China
autor
  • School of Life Science, Lanzhou University, 730000 Lanzhou, China
autor
  • School of Life Science, Lanzhou University, 730000 Lanzhou, China
autor
  • School of Life Science, Lanzhou University, 730000 Lanzhou, China

Bibliografia

  • Barton MK, Poethig S (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and shoot meristemless mutant. Development 119:823–831
  • Chander SF, Lu CY (2005) Biotechnology in ornamental horticulture. In Vitro Cell Dev Biol Plant 41:591–601
  • Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575
  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is regulated for maintence of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979. doi:10.1046/j. 1365-313X.1996.10060967.x
  • Frugis G, Giannino D, Mele G et al (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126:1370–1380. doi:10.1104/pp.126. 4.1370
  • Hamant O, Nogue F, Belles-Boix E et al. (2002) The KNAT2 homedomain protein interacts with ethylene and cytokinin signaling. Plant Physiol 130:657–665. doi:10.1104/pp.004564
  • Hareven D, Gutfinger T, Parnis A et al (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744. doi:10.1016/S0092-8674(00)81051-X
  • Honda H, Hirai A (1990) A simple and efficient method for identification of hybrids using non-radioactive rDNA as probe. Jpn J Breed 40:339–348
  • Hu X, Wu QF, Xie YH, Ru H, Xie F, Wang XY et al (2005) Ectopic expression of the PttKN1 gene induces alterations in the morphology of the leaves and flowers in Petunia hybrida Vilm. J Integr Plant Biol 47(10):1153–1158. doi:10.1111/j.1744-7909.2005.00166.x
  • Karpen GH (1994) Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev 4:281–291. doi:10.1016/S0959-437X(05)80055-3
  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887
  • Kusaba S, Kano-Murakami Y, Matsuoka M et al (1998) Alteration of hormone levels in transgenic tobacco plants overexpressing the rice homeobox gene OSH1. Plant Physiol 116:471–476. doi: 10.1104/pp.116.2.471
  • Muehlbauer GJ, Fowler JE, Freeling M (1999) Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Development 124:5097–5106
  • Murthy HN, Jeong JH, Choi YE, Paek KY (2003) Agrobacteriummediated transformation of niger using seedling explants. Plant Cell Rep 21:1183–1187. doi:10.1007/s00299-003-0573-1
  • Muskens MW, Vissers AP, Mol JN, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260. doi:10.1023/A: 1006491613768
  • Nester JE, Zeevaart JAD (1988) Flower development in normal tomato and a gibberellin-deficient (GA-2) mutant. Am J Bot 75:45–55. doi:10.2307/2443904
  • Reiser L, Sánchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of Knox homeobox genes. Plant Mol Biol 42:151–166. doi:10.1023/A:10063841 22567
  • Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117. doi:10.1104/pp.102.015560
  • Sakamoto T, Kamiya N, Tanaka-Ueguchi M et al (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590. doi:10.1101/gad.867901
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York
  • Selker EU (1999) Gene silencing: repeats that count. Cell 97:157–160. doi:10.1016/S0092-8674(00)80725-4
  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene KNOTTED-1 causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795. doi:10.1101/gad.7.5.787
  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131
  • Smith L, Greene B, Veit B et al (1992) A dominant mutation in the maize homeobox gene KNOTTED1 causes its ectopic expression in leaf cells with altered fates. Development 116:21–30
  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot (Lond) 79:3–12. doi:10.1006/anbo. 1996.0295
  • Tamaoki M, Kusaba S, Kano-Murakami Y et al (1997) Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol 38(8):917–927
  • Tzfira T, Jensen CS, Wang W, Zuker A, Vinocur B, Altman A et al (1997) Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15:219–235. doi:10.1023/A:1007484917759
  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243. doi:10.1038/350241a0

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-16f28a69-91a1-4ca4-94b5-1e7284c74e61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.