Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 2A |

Tytuł artykułu

In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species

Warianty tytułu

Języki publikacji



During the last decade microsatellites or SSRs (simple sequence repeats) have been proven to be the markers of choice in plant genetics research and for breeding purposes because of their hypervariability and ease of detection. However, development of these markers is expensive, labour intensive and time consuming, in particular, if they are being developed from genomie libraries. In the context of large-scale sequencing and genomics programmes in various cereal species at different laboratories, a large set of expressed sequence tags (ESTs) is being generated, which can be used to search for microsatellites. Keeping in view the importance of such type of SSRs, available ESTs of some cereal species like barley, maize, oats, rice, rye and wheat were investigated for a study of abundance, frequency and distribution of various types of microsatellites. SSRs were present in about 7% to 10% of the total ESTs in the investigated cereal genomes. On the basis of surveying EST sequences amounting to 75.2 Mb in barley, 54.7 Mb in maize, 43.9 Mb in rice, 3.7 Mb in rye, 41.6 Mb in sorghum and 37.5 Mb in wheat, the frequency of SSRs was 1/7.5 kb in barley, 1/7.5 kb in maize, 1/6.2 kb in wheat, 1/5.5 kb in rye and sorghum and 1/3.9 kb in rice. The overall average SSR frequency for these species is 1/6.0 kb. Trimeric repeats are the most abundant (54% to 78%) class of microsatellites followed by dimeric repeats (17% to 40%). Among the trimeric repeats the motifs CCG are the most common in all the cases ranging from 32% in wheat to 49% in sorghum. When all these SSRs were analysed for assessing their potential to develop new markers, unique primer pairs could be designed for 30% to 70% of the total non-redundant microsatellites which are up to 3% of total ESTs in the studied species.








Opis fizyczny



  • Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D 06466 Gatersleben, Germany
  • Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D 06466 Gatersleben, Germany
  • Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D 06466 Gatersleben, Germany
  • Department of Plant Science, University of Adelaide, Waite Campus, PMB1 Glen Osmond, 5064 South Australia
  • Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D 06466 Gatersleben, Germany


  • 1. Beckmann, J. S. and Soller, M. Towards a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Bio/Technology 8 (1990) 930-932.
  • 2. Tautz, D. Hypervariablity of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17 (1989) 6443-6471.
  • 3. Gupta, P. K. and Varshney, R. K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113 (2000) 163-185.
  • 4. Ramsay, L., Macaulay, M., Ivanissevich, D. S., MacLean, K., Cardle, L., Fuller, J., Edwards, K. J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. A simple sequence repeat-based linkage map of barley. Genetics 156 (2000) 1997-2005.
  • 5. Yu, J., Lu, H. and Bernardo, R. Inconsistency between SSR groupings and genetic backgrounds of white corn inbreds. Maydica 46 (2001) 133-139.
  • 6. Li, C. D., Rossnagel, B. G. and Scoles, G. J. The development of oats microsatellite markers and their use in identifying relationships among Avena species and oats cultivars. Theor. Appl. Genet. 101 (2000) 1259- 1268.
  • 7. Temnykh, S., Park, W. D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y. G., Ishii, T. and McCouch, S. R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100 (2000) 697-712.
  • 8. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and McCouch, S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11 (2001) 1441-1452.
  • 9. Saal, B. and Wricke, G. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42 (1999) 964-972.
  • 10. Bhattramakki, D., Dong, J. M., Chhabra, A. K. and Hart, G. E. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43 (2000) 988-1002.
  • 11. Roder, M. S., Korzn, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P. and Ganal, M. A microsatellite map of wheat. Genetics 149 (1998) 2007-2023.
  • 12. Varshney, R. K., Kumar, A., Balyan, H. S., Roy, J. K., Prasad, M. and Gupta, P. K. Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Mol. Biol. Rep. 18 (2000) 1-12.
  • 13. Thiel, T. Identifizierung, Kartierung und Chjarakterisierung cDNA basierter Mikrosatelliten-Marker zur Diversitätsanalyse bei gerste (Hordeum vulgare L.). Diploma thesis. Technische Universität Dresden (2001) 99.
  • 14. Scott, K. D. Microsatellite derived from ESTs, and their comparison with those derived by other methods. In: Plant Genotyping: The DNA Fingerprinting of Plants, (Henry, R. J., Ed.), CABI Publishing, Oxon, U. K., 2001, 225-237.
  • 15. Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M., Lee, L. S. and Henry, R. J. Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100 (2000) 723-726.
  • 16. Eujayl, I., Sorrells, M., Baum, M., Wolters, P. and Powell, W. Assesment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119 (2001) 39-43.
  • 17. Kota, R., Varshney, R. K., Thiel, T., Dehmer, K. J. and Graner A. Generation and comparison of EST-derived SSR and SNP markers in barley (Hordeum vulgare L.). Hereditas 135 (2001) 141-151.
  • 18. Cordeiro, G., Casu, R., McIntyre, C., Manners, J. and Henry, R. J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross-transferable to erianthus and sorghum. Plant Sci. 160 (2001) 1115-1123.
  • 19. Eujayl, I., Sorrells, M., Baum, M., Wolters, P., and Powell, W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 104 (2002) 399-407.
  • 20. Miller, R. T., Christoffels, A. G., Gopalakrishnan, C., Burke, J., Ptitsyn, A. A., Broveak, T. R. and Hide, W. A. A comprehensive approach to clustering of expressed human gene sequence: the sequence tag alignment and consensus knowledge base. Genome Res. 9 (1999) 101-113.
  • 21. Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D. and Waugh, R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156 (2000) 847-854.
  • 22. Akagi, H., Yokozeki, Y., Inagaki, A. and Fujimura, T. Microsatellite DNA markers for rice chromosomes. Theor. Appl. Genet. 93 (1996) 1071-1077.
  • 23. Metzgar, D., Bytof, J., and Wills, C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10 (2000) 72-80.
  • 24. Morgante, M. and Olivieri, A. M. PCR-amplified microsatellites as markers in in plant genetics. Plant J. 3 (1993) 175-182.
  • 25. Powell, W., Machray, G. C. and Provan, J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1 (1996) 215-222.
  • 26. Chin, E. C. L. Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39 (1996) 866-873.
  • 27. Morgante, M., Hanafey, M. and Powell, W. Microsatellites are preferentially with nonrepetitive DNA in plant genomes. Nature Genet. 30 (2002) 194-200.
  • 28. Kantety, R. V., Rota, M. L., Matthews, D. E. and Sorrells, M. E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48 (2002) 501-510.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.