PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 50 | 2 |

Tytuł artykułu

Cd, Zn, Cu, Pb, Co, Ni phytotoxicity assessment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper, we investigate using of probit analysis for heavy metals (Pb, Cd, Cu, Zn, Co, Ni) toxicity assessment for spring barley (Hordeum vulgare L.) in sod podzolic sandy loam and chernozem soils. Estimation of the heavy metals phytotoxicity by means of PhLD50 value was suggested. The PhLD50 value is a doze of metal in soil that causes 50% reduction of plant biomass (mg·kg⁻¹). According to PhLD50 value, metals can be ranked by the effect on biomass reduction as: Cd>Cu>Ni>Co>Pb>Zn (sod podzolic soil) and Cd>Cu>Ni>Co>Zn>Pb (chernozem soil). Results of the study could be useful indicators of Cu, Ni, Co, Cd, Pb and Zn phytotoxicity assessment at the growing of Hordeum vulgare (L.) in heavy metals contaminated areas. The PhLD50 value demonstrates the comparative toxicity of metals. Tight correlation between studied metals phytotoxicity for plants of spring barley and polarity shift caused by adding to organic matrix – diphenilthiocarbazone (ditizone) for studied metals was observed. This approach may be prominent for metals risk assessment. This work is an attempt to extend our investigations on correlation and methods of polarity assessment and ecotoxicological risk of different groups of contaminants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

50

Numer

2

Opis fizyczny

p.197-215,fig.,ref.

Twórcy

  • Department of Environment Safety, State Ecological Academy of Post-Graduate Education and Management, 35 Mytropolyta Lypkivskogo St, Kyiv, 03135, Ukraine
  • Breeding station, KWS Ukraine, 19 Drugby Narodiv Blvd., Kyiv, 01042, Ukraine
  • Faculty of Natural Sciences National University of Kyiv-Mohyla Academy 2 Skovoroda St, office 3-216, Kyiv, 0465, Ukraine

Bibliografia

  • [1] Alloway, B.J. (ed.), 2010. Heavy Metals in Soils. Trace Elements and Metalloids in Soils and Their Bioavailability. UK: Springer, p. 235.
  • [2] Amin, H., Arain, B.A., Amin, F., Surhio, M.A., 2013. Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4: 2431–2439, DOI: 10.4236/ajps.2013.412302.
  • [3] Azimi, A.A., Navab Daneshmand, T., Pardakhti, A., 2006. Cadmium Absorption and Accumulation in Different Parts of Kidney Beans, Radishes and Pumpkins. Int. J. Environ. Sci. Tech., 3, 2: 177–184.
  • [4] Bliss, C.I., 1934. The Method of Probits. Science, 79, 2037: 38–39.
  • [5] Campaña, D.H., Uribe Echevarría, M.E., Airasca A.O., Andrade Couce, M.L., 2014. Physicochemical and Phytotoxic Characterisation of Residual Sludge from the Malting of Barley. J. Pollut. Eff. Cont., 2: 2, DOI: 10.4172/2375-4397.1000115.
  • [6] DeLgado, M.M., Martin, J.V., De Imperial, R.M., León-Cófreces, C., García, M.C., 2010. Phytotoxicity of Uncomposted and Composted Poultry Manure. African Journal of Plant Science, 4(5): 154–162.
  • [7] Dospekhov, B.A., 1985. Methodology of Field Experiment. Мoscow: Agropromizdat, pp. 313–316.
  • [8] Ducic, T., Polle, А., 2005. Transport and Detoxification of Manganese and Copper in Plants. Braz. J. Plant Physiol., 17(1).
  • [9] Egoshina, T.L., Shikhova, L.N., 2008. Lead in Soil and Plant at North-West Part of European Russia. Announcer of ONU, 10(92): 135–141.
  • [10] Eid, E.M., El-Sheikh, M.A., Alatar, A.A., 2012. Uptake of Ag, Co and Ni by the Organs of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus and Their Potential Use as Contamination Indicators. Open Journal of Modern Hydrology, 2: 21–27; DOI: 10.4236/ojmh.2012.21004.
  • [11] Forrest, J., Bazylewski, P., Bauer, R., Hong, S., Kim, C.Y., Giesy, J.P., Khim, J.S., Chang, G.S., 2014. A Comprehensive Model for Chemical Bioavailability and Toxicity of Organic Chemicals Based on First Principles. Frontiers in Marine Science, 1, 31: 1–7.
  • [12] Gill, M., 2014. Heavy Metal Stress in Plants: A Review. International Journal of Advanced Research, 2(6): 1043–1055.
  • [13] González, Á., Lobo, M.C., 2013. Growth of Four Varieties of Barley (Hordeum vulgare L.) in Soils Contaminated with Heavy Metals and Their Effects on Some Physiological Traits. American Journal of Plant Sciences, 4, 1799–1810, DOI: 10.4236/ajps.2013.49221.
  • [14] Ilyin, V.B., Syso, A.I., 2001. Microelements and Heavy Metals in Soils and Plants of Novosibirsk Region. Novosibirsk: RAS, pp. 30–31.
  • [15] Jakubus, M. 2012. Phytotoxicity and Speciation of Copper and Nickel in Composted Sewage Sludge. J. Elem., 43–56, DOI: 10.5601/jelem.2012.17.1.04.
  • [16] Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace Elements from Soil to Human. Berlin: Springer-Verlag.
  • [17] Kaonga, C.C., Kumwenda, J., Mapoma, H.T., 2010. Accumulation of Lead, Cadmium, Manganese, Copper and Zinc by Sludge Worms; Tubifex Tubifex in Sewage Sludge. Int. J. Environ. Sci. Tech., 7 (1): 119–126.
  • [18] Kavetsky, V.M., Ryzhenko, N.O., 2008. Physical and Chemical Criteria for Pesticides Determination and Risk Assessment in Ecosystem. Polish J. Chem., 82: 361–369.
  • [19] Kavetsky, V.M., Bublik, L.I., 1989. Using Thin Layer Chromatography for Organic Substances Dipole Moment Determination. Physical Chemistry J., 13 (4): 1021.
  • [20] Kavetsky, V.M., Bublik, L.I., 1987. Determination of Organic Substances Dipole Moment. A.P. No. 1296930 USSR А1G01N30/9615.11 VNIIGPE. No. 3753317/23-25, no. 10.
  • [21] Kavetsky, V.M., Makarenko, N.A., Buogis, A.M. Kavetsky, S.V., 2001. Thin Layer Chromatography Methods of the Hg, Zn, Co, Cd, Cu, Ni Determination in Soil, Plant and Water, no. 50–97. Methods of Determination of Pesticides Residues in Food, Forage and Environment, Kyiv, pp. 18–23.
  • [22] Kruk, L.S., Kavetsky, V.M., 1999. Harvest Pesticides Pollution assessment depend on its polarity. Agroecology and Biotechnology J., Kyiv, p. 357.
  • [23] Kukier, U., Chancy, R.L., 2004. In Situ Remediation of Nickel Phytotoxicity for Different Plant Species. J. of Plant Nutrition, 27(3): 465–495.
  • [24] Liu, J., Duan, C.-Q., Zhu, Y.-N., Zhang, X.-H., Wang, C.-X., 2007. Effect of Chemical Fertilizers on the Fractionation of Cu, Cr and Ni in Contaminated Soil. Environmental Geology, 52(8): 1601–1606.
  • [25] Mamatha, P., Sugali, S., Swamy, A.V.N., Boyina, R.P.R., 2014. Quantitative and Risk Analysis of Heavy Metals in Selected Leafy Vegetables. Der Pharma Chemica, 6(3): 179–185.
  • [26] Mantorova, G.F., 2010. Heavy Metals in Soil and Plant Production under Conditions of Anthropogenic Pollution. Agro, XXI, 1–3: 52–54.
  • [27] Medvedev, V.V., Laktionova, T.M., Bal’uk, S.A., Blokhina, N.M., Bililypsky, V.O., 1998. Method of Monitoring of Lands Which Are in the Crisis State, Kharkiv, O.N. Sokolovsky’ Institute of Soil Science.
  • [28] Naz, A., Khan, S., Qasim, M., Khalid, S., Muhammad, S., Tariq, M., 2013. Metals Toxicity and Its Bioaccumulation in Purslane Seedlings Grown in Controlled Environment. Natural Science, 5(5): 573–579, DOI: 10.4236/ns.2013.55073.
  • [29] Nicholson, F.A., Chambers, B.J. Alloway, B.J., 1997. Effect of Soil pH on Heavy Metal Bioavailability. Proceeding of Fourth International Conference on the Bio-geochemistry of Trace Elements, Berkeley, 23–26 June, pp. 499–500.
  • [30] Römbke, J., Moltmann, J.F., 1996. Applied Ecotoxicology, Boca Raton: Lewis Publishers, pp. 38–45.
  • [31] Ryzhenko, N.O., 2012. Bioaccumulation of Рb, Cd, Zn, Cu in the Condition of Impact Pollution – Ecotoxicology Criteria of Environment Quality. Kyiv, J. of Ecological Sciences, 1, 46–55.
  • [32] Ryzhenko, N., Kavetsky, V., 2015. Assessment of Heavy Metal’s (Cd, Zn, Cu, Pb, Co, Ni) Toxicity for Plants by Polarity of Their Dytizonates and LD50. Agroecol. J., Kyiv, 3, 52–60.
  • [33] Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M.B., Bharwana, S.A., Tauqeer, H.M., 2013. Heavy Metals Contamination and What Are the Impacts on Living Organisms. Greener Journal of Environmental Management and Public Safety, 2 (4): 172–179.
  • [34] Satpathy, D., Vikram Reddy, M., Prakash Dhal, S., 2014. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014, (11 pages), DOI: 10.1155/2014/545473.
  • [35] Soil Guideline Values for nickel in soil. Science Report SC050021 / Nickel SGV, 2009. Environment Agency, http://www.environmentagency.gov.uk/clea [access: 03.03.2015].
  • [36] Soldatova, N.A., Khryanin, V.N., 2008. Influence of Lead Salts on Growing Processes in Plants Cannabis Sativa L. J. News of PGPU, Section of Young Scientist, 6 (10): 215–218.
  • [37] Somova, L.A., Pechurkin, N.S., 2009. The Influence of Microbial Associations on Germination of Wheat Seeds and the Growth of Seedlings under the Impact of Zn Salts. Adv. in Space Research, 8, 1224–1228.
  • [38] Valavanidis, A., Vlachogianni, T., 2010. Metal Pollution in Ecosystems. Ecotoxicology Studies and Risk Assessment in the Marine Environment. Science advances on Environment, Toxicology and Ecotoxicology issues, www.chem.-tox-ecotox.org/wp/wp-content/uploads/2010/01/02-Metals-17_01_2010.pdf [access: 03.03.2015].
  • [39] Valerio, M.E., García, J.F., Peinado, F.M., 2007. Determination of Phytotoxicity of Soluble Elements in Soils, Based on a Bioassay with Lettuce (Lactuca sativa L.). Science of the Total Environment, 378: 63–66.
  • [40] Wang, X., Chen, L., Xia, S., Zhao, J., 2008. Changes of Cu, Zn, and Ni Chemical Speciation in Sewage Sludge Co-Composted with Sodium Sulfide and Lime. Journal of Environmental Sciences 20, 156–160.
  • [41] Wang, Q.R., Cui, Y.S., Liu, X.M., Dong, Y.T., Christie, P., 2003. Soil Contamination and Plant Uptake of Heavy Metals at Polluted Sites in China. J. Environ Sci. Health A Tox. Hazard Subst. Environ Eng., 38 (5): 823–838.
  • [42] Wu, S.G., Huang, L., Head, J., Chen, D.-R., Kong, I.-Ch., Tang, Y.J., 2012. Phytotoxicity of Metal Oxide Nanoparticles is Related to Both Dissolved Metals Ions and Adsorption of Particles on Seed Surfaces. J. Pet. Environ. Biotechnol., 3: 4, DOI: 10.4172/2157-7463.1000126.
  • [43] Zhang, X., Lin, A.J., Zhao, F.J., Xu, G.Z., Duan, G.L., Zhu, Y.G., 2008. Arsenic Accumulation by the Aquatic Fern Azolla: Comparison of Arsenate Uptake, Speciation and Efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 156 (3): 1149–1155.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-15f97ef6-5e67-4c57-8264-65365c17f1cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.