PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 6 |

Tytuł artykułu

Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Effects of polyethylene glycol (PEG)-induced water stress on the activities of total leaf superoxide dismutase (SOD) and chloroplast SOD (including thylakoid-bound SOD and stroma SOD) are described in white clover (Trifolium repens L.) grown in solution culture from rooted cuttings. Both leaf SOD and chloroplast SOD activities were markedly enhanced with increasing concentration of PEG stress, generating osmotic potentials around the roots 0,-0.5, -1.0, -1.5 MPa. The effects increased with time up to 72 h. Chloroplast Fe-containing SOD represented about 30% of the total leaf SOD activity in the control plants and a significant increase in chloroplast SOD activity was found during the stress period. This accounted for about 35.5–71.1% of the total leaf SOD activity. The proportion of chloroplast SOD in total leaf SOD not only increased with the decreasing of osmotic potential, but also increased with incubation time. Furthermore, the increase in thylakoid-bound SOD activity was much higher than that of stroma SOD in chloroplast of plants under water stress. The enhanced chloroplastic SOD activity, especially thylakoid-bound SOD activity, demonstrated in Trifolium repens suggests that Fe-SOD located in chloroplasts play a more important role than cytosolic Cu/Zncontaining SODs in scavenging O₂⁻.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

30

Numer

6

Opis fizyczny

p.841-847,fig.,ref.

Twórcy

  • College of Life Sciences, Shandong University of Technology, 255049 Zibo, Shandong, China
autor
  • Weifang Vocational College, 261031 Weifang, Shandong, China

Bibliografia

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev. arplant.50.1.601
  • Baum JA, Scandalios JG (1979) Developmental expression and intracellular localization of superoxide dismutase in maize. Differentiation 13:133–140. doi:10.1111/j.1432-0436.1979. tb01576.x
  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase. Improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23:135–144. doi:10.1046/j.1365-3040.2000.00542.x
  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218. doi:10.1080/713608062
  • Boyer J (1982) Plant productivity and environment. Science 218:443–444. doi:10.1126/science.218.4571.443
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Cabuslay GS, Ito O, Alejar AA (2002) Physiological evaluation of responses of rice. Plant Sci 163:815–827. doi:10.1016/S0168-9452(02)00217-0
  • Damodara C, Venkaiah B (1984) Studies on isoenzymes of superoxide dismutase from mung bean (Vigna radiata) seedlings. J Plant Physiol 116:279–284
  • Foyer CH (1996) Free radical processes in plants. Biochem Soc Trans 24:427–433
  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523. doi:10.1111/j.1365-3040.1994.tb00146.x
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases, I. Occurrence in higher plants. Plant Physiol 59:309–314
  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633. doi:10.1073/pnas. 90.4.1629
  • Hayakawa T, Kanematsu S, Asada K (1985) Purification and characterization of thylakoid-bound Mn-superoxide dismutase in spinach chloroplasts. Planta 166:111–116. doi:10.1007/BF00397393
  • Hernandez JA, Del Rio L, Sevilla F (1994) Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata L. New Phytol 126:37–44. doi:10.1111/j.1469-8137.1994.tb07527.x
  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York
  • Kaiser WM (1979) Reversible inhibition of the Calvin Cycle and inactivation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382. doi:10.1007/BF00388364
  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0
  • Li FL, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255. doi: 10.1016/j.envexpbot.2007.11.002
  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D’halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sati6a L.). Plant Physiol 103:1155–1163. doi:10.1104/pp. 103. 4.1155
  • Moran JK, Becana M, Iturbe-Ormaexte I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352. doi:10.1007/BF00197534
  • Navari-lzzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri CLM (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol Plant 104:630–638. doi:10.1034/j.1399-3054.1998.1040416.x
  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333
  • Pang CH, Zhang SJ, Gong ZZ, Wang BS (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plant 125:490–499
  • Perl A, Perl-treves R, Galili S, Aviv D, Shalgi E, Malkin S et al (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor Appl Genet 85:568–576. doi:10.1007/BF00220915
  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101(1): 7–12
  • Sgherri CLM, Maffei M, Navari-lzzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273–279
  • Sigaud-Kutner TCS, Pinto E, Okamoto OK, Latorre LR, Colepicolo P (2002) Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol Plant 114:566–571. doi:10.1034/j.1399-3054.2002.1140409.x
  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. doi: 10.1111/j.1469-8137.1993.tb03863.x
  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T et al (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial MnSOD in chloroplast. Plant Sci 148:131–138. doi:10.1016/S0168-9452(99)00133-8
  • Van Rensburg L, Krüger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. Plant Physiol 143:730–737
  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D, Reupold-Poop P (1994a) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnolgy 12:165–168. doi:10.1038/nbt0294-165
  • Van Camp W, Herouart D, Willekens H, Takahashi H, Saito K, Van Montagu M et al (1994b) Tissue-specific activity of two manganese superoxide dismutase promotors in transgenic tobacco. Plant Physiol 112:525–535. doi:10.1104/pp. 112.2.525
  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact Of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412. doi:10.1104/pp. 116.4.1403
  • Wu FZ, Bao WK, Li FL, Wu N (2007) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255. doi:10.1016/j.envexpbot.2007.11.002
  • Yu Q, Rengel Z (1999) Drought and salinity differentially influence activities of superoxide dismutases in narrowleafed lupinus. Plant Sci 142:1–11. doi:10.1016/S0168-9452(98)00246-5
  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol 35:785–791

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-15db4397-39bb-4316-a5c2-6b7198cc90f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.